Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
This paper presents the technique of step acousto-optical deflection and its application in high speed interferometric photography. When a light beam carrying the interferogram information passes through an acousto-op...This paper presents the technique of step acousto-optical deflection and its application in high speed interferometric photography. When a light beam carrying the interferogram information passes through an acousto-optical deflector, it is deflected into 10 patterns (φ6 mm-φ8 mm in diameter) in time-sequence and recorded on a fixed film under the action of step pulsed ultrasonic waves. The exposure time of every pattern is adjustable within the range of 10^(-5)-3 ×10^(-6) s and the interval between two patterns is 10^(-5) s. The multi-frame interferograms of the transient combustion field of the first fire composition ignited by laser are recorded by using this method with combination of a laser interferometer, and the temperature distribution and its change with time is calculated quantitatively.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that t...We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.展开更多
Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the m...Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.展开更多
By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The va...By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative s...Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.展开更多
In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg...In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.展开更多
The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtaine...The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtained results show that, if altitude difference and span of the riverbanks are taken as 5 meters and 100 meters, respectively, the maximum gradient in the middle of the bridge exceeds 5%, much larger than maximum allowance gradient in railway design code. Therefore, a new solution scheme for decreasing gradient of the bridge is put forward, that is, the altitude difference between two riverbanks can be decreased to about 1/10 of the initial magnitude by building roadbeds with 0.5% gradient and 1 kilometer length at two riverbanks. As a direct result, the deflection gradient of the railway bridge is much reduced and the value is between 0.5% similar to 0.6%.展开更多
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of th...Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch al between the substrate and the driving layer. It also strongly depends on the elastic mismatch a2 between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on a2 gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient...Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.展开更多
In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for ci...In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for circular plates with initial deflection are obtained by use of Galerkin method and Lindstedt-Poincare perturbation method. The effect of initial deflection on the dynamic behavior of the flexible plates are also discussed.展开更多
The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution ...The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.展开更多
The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type materi...The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type material. Through reasonably simplified integration, the strain and curvature of the axis of the beam are presented in implicit formulations. The governing equations involving both geometric and material nonlin- earities of the curved beam are derived and solved by the shooting method. When the initial curvature of the beam is zero, the curved beam is degenerated into a straight beam, and the predicted results obtained by the present model are consistent with those in the open literature. Numerical examples are further given for curved cantilever and simply supported beams, and the couplings between elongation and bending are found for the curved beams.展开更多
In an open-circuit dissipative photovoltaic (PV) crystal, by considering the diffusion effect, the deflection of bright dissipative photovoltaic (DPV) solitons has been investigated by employing numerical techniqu...In an open-circuit dissipative photovoltaic (PV) crystal, by considering the diffusion effect, the deflection of bright dissipative photovoltaic (DPV) solitons has been investigated by employing numerical technique and perturbational procedure. The relevant results show that the centre of the optical beam moves along a parabolic trajectory, while the central spatial-frequency component shifts linearly with the propagation distance; furthermore, both the spatial deflection and the angular derivation are associated with the photovoltaic field. Such DPV solitons have a fixed deflection degree completely determined by the parameters of the dissipative system. The small bending cannot affect the formation of the DPV soliton via two-wave mixing.展开更多
This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one ...This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one thousand finite element cases were numerically analyzed,followed by extensive parametric studies.Surrogate models were developed via ensemble learning methods(ELMs),including the e Xtreme Gradient Boosting(XGBoost),and Random Forest Regression(RFR)to predict the maximum lateral wall deformation(δhmax).Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression(DTR),Multilayer Perceptron Regression(MLPR),and Multivariate Adaptive Regression Splines(MARS).This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast,alternative way.展开更多
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con...For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
文摘This paper presents the technique of step acousto-optical deflection and its application in high speed interferometric photography. When a light beam carrying the interferogram information passes through an acousto-optical deflector, it is deflected into 10 patterns (φ6 mm-φ8 mm in diameter) in time-sequence and recorded on a fixed film under the action of step pulsed ultrasonic waves. The exposure time of every pattern is adjustable within the range of 10^(-5)-3 ×10^(-6) s and the interval between two patterns is 10^(-5) s. The multi-frame interferograms of the transient combustion field of the first fire composition ignited by laser are recorded by using this method with combination of a laser interferometer, and the temperature distribution and its change with time is calculated quantitatively.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金supported by the Natural Science Foundation of Anhui Province (Grant No. 2208085QF217)the National Natural Science Foundation of China (Grant No. 52102012)the Hefei Institutes of Physical Science (HFIPS) Director’s Fund (Grant No. YZJJ2022QN08)。
文摘We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.
基金financially supported by the foundation of the Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,China (No. MESTA-2020-B006)the National Natural Science Foundation of China (No.41774001)
文摘Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.
文摘By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
文摘Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.
基金Project(51175442)supported by the National Natural Science Foundation of ChinaProject(QD2012A09)supported by Teachers’College Research Project,ChinaProject(14ZA0263)supported by Research Project of Sichuan Provincial Department of Education,China
文摘In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.
文摘The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtained results show that, if altitude difference and span of the riverbanks are taken as 5 meters and 100 meters, respectively, the maximum gradient in the middle of the bridge exceeds 5%, much larger than maximum allowance gradient in railway design code. Therefore, a new solution scheme for decreasing gradient of the bridge is put forward, that is, the altitude difference between two riverbanks can be decreased to about 1/10 of the initial magnitude by building roadbeds with 0.5% gradient and 1 kilometer length at two riverbanks. As a direct result, the deflection gradient of the railway bridge is much reduced and the value is between 0.5% similar to 0.6%.
基金Project supported by the National Natural Science Foundation of China(No.51175404)
文摘Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch al between the substrate and the driving layer. It also strongly depends on the elastic mismatch a2 between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on a2 gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金supported by the National Natural Science Foundation of China(Nos.51208096,51808301)
文摘Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.
文摘In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for circular plates with initial deflection are obtained by use of Galerkin method and Lindstedt-Poincare perturbation method. The effect of initial deflection on the dynamic behavior of the flexible plates are also discussed.
文摘The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.
基金supported by the National Natural Science Foundation of China(Nos.11472035 and 11472034)
文摘The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type material. Through reasonably simplified integration, the strain and curvature of the axis of the beam are presented in implicit formulations. The governing equations involving both geometric and material nonlin- earities of the curved beam are derived and solved by the shooting method. When the initial curvature of the beam is zero, the curved beam is degenerated into a straight beam, and the predicted results obtained by the present model are consistent with those in the open literature. Numerical examples are further given for curved cantilever and simply supported beams, and the couplings between elongation and bending are found for the curved beams.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574051 and 10174025).
文摘In an open-circuit dissipative photovoltaic (PV) crystal, by considering the diffusion effect, the deflection of bright dissipative photovoltaic (DPV) solitons has been investigated by employing numerical technique and perturbational procedure. The relevant results show that the centre of the optical beam moves along a parabolic trajectory, while the central spatial-frequency component shifts linearly with the propagation distance; furthermore, both the spatial deflection and the angular derivation are associated with the photovoltaic field. Such DPV solitons have a fixed deflection degree completely determined by the parameters of the dissipative system. The small bending cannot affect the formation of the DPV soliton via two-wave mixing.
基金supported by the High-end Foreign Expert Introduction program(No.G20190022002)Chongqing Construction Science and Technology Plan Project(2019-0045)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900102)The financial support is gratefully acknowledged。
文摘This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one thousand finite element cases were numerically analyzed,followed by extensive parametric studies.Surrogate models were developed via ensemble learning methods(ELMs),including the e Xtreme Gradient Boosting(XGBoost),and Random Forest Regression(RFR)to predict the maximum lateral wall deformation(δhmax).Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression(DTR),Multilayer Perceptron Regression(MLPR),and Multivariate Adaptive Regression Splines(MARS).This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast,alternative way.
基金supported by the National Natural Science Foundation of China (Grants 91216108, 11432014, 11672301, 11372318, and 11502273)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040501)
文摘For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.