Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have ...Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have been efficacious to patients with lung adenocarcinoma exhibiting EGFR mutations.However,resistance to treatment is inevitable and eventually leads to tumor progression,recurrence,and reduction in the overall treatment efficacy.Lung cancer stem cells play a crucial role in the development of resistance toward EGFR-TKI–targeted therapy for lung adenocarcinoma.Lung cancer stem cells possess self-renewal,multilineage differentiation,and unlimited proliferation capabilities,which efficiently contribute to tumor formation and ultimately lead to tumor recurrence andmetastasis.In this study,we evaluated the origin,markers,stemness index,relevant classic studies,resistance mechanisms,related signaling pathways,and strategies for reversing lung cancer stem cell resistance to EGFR-TKIs to provide new insights on delaying or reducing resistance and to improve the treatment efficacy of patients with EGFR-mutated lung adenocarcinoma in the future.展开更多
To investigate the prevalence of drug-resistance mutations,resistance to antiretroviral drugs,and the subsequent virological response to therapy in treatment-naive and antiretroviral-treated patients infected with HIV...To investigate the prevalence of drug-resistance mutations,resistance to antiretroviral drugs,and the subsequent virological response to therapy in treatment-naive and antiretroviral-treated patients infected with HIV/AIDS in Henan,China,a total of 431 plasma samples were collected in Queshan county between 2003 and 2004,from patients undergoing the antiretroviral regimen Zidovudine + Didanosine + Nevirapine(Azt+Ddi+Nvp).Personal information was collected by face to face interview.Viral load and genotypic drug resistance were tested.Drug resistance mutation data were obtained by analyzing patient-derived sequences through the HIVdb Program(http://hivdb.stanford.edu).Overall,38.5% of treatment-naive patients had undetectable plasma viral load(VL),the rate significantly increased to 61.9% in 0 to 6 months treatment patients(mean 3 months)(P<0.005)but again significantly decrease to 38.6% in 6 to 12 months treatment patients(mean 9 months)(P<0.001)and 40.0% in patients receiving more than 12 months treatment(mean 16 months)(P<0.005).The prevalence of drug resistance in patients who had a detectable VL and available sequences were 7.0%,48.6%,70.8%,72.3% in treatment-na?ve,0 to 6 months treatment,6 to 12 months treatment,and treatment for greater than 12 months patients,respectively.No mutation associated with resistance to Protease inhibitor(PI)was detected in this study.Nucleoside RT inhibitor(NRTI)mutations always emerged after non-nucleoside RT inhibitor(NNRTI)mutations,and were only found in patients treated for more than 6 months,with a frequency less than 5%,with the exception of mutation T215Y(12.8%,6/47)which occurred in patients treated for more than 12 months.NNRTI mutations emerged quickly after therapy begun,and increased significantly in patients treated for more than 6 months(P<0.005),and the most frequent mutations were K103N,V106A,Y181C,G190A.There had been optimal viral suppression in patients undergoing treatment for less than 6 months in Queshan,Henan.The drug resistance strains were highly prevalent in antiretroviral-treated patients,and increased with the continuation of therapy,with many patients encountering virological failure after 6 months therapy.展开更多
Bacteriophages have a potentially important role to play in reducing the global incidence of Hospital Acquired Infection (HAI). Their use should be focused on reducing the use and over-use of antibiotics as part of in...Bacteriophages have a potentially important role to play in reducing the global incidence of Hospital Acquired Infection (HAI). Their use should be focused on reducing the use and over-use of antibiotics as part of integrated control measures in conjunction with various vaccination, sanitation procedures and prophylactic and treatment regimens. Bacteriophages offer exquisite specificity and efficacy in killing target bacterial strains, a phenomenon known for almost 100 years. However, their efficacy with respect to broad-spectrum antibiotics is poor due to the highly strain-selective nature of their killing and their rapid elimination from the body. Bacteriophage killing is a naturally-occurring process capable of limiting and eliminating bacterial populations in humans. This is achieved through exponential amplification of their number, if and when, they encounter a target bacterium. Unfortunately, processes employed for their commercial production today do not meet the same rigour as dictated for pharmaceutical products. Batch-to-batch reproducibility and molecular definition of target and phage strains must be demanded before their clinical use can become widespread. Elsewhere, historical data have demonstrated safety in humans beyond any doubt. Because patients continue to die in our healthcare centers internationally, the use of bacteriophage to help fight HAI should be reassessed. Here, relevant literature is reviewed.展开更多
Acquired resistance formation limits the efficacy of anti-cancer therapies.Acquired and intrinsic resistance differ conceptually.Acquired resistance is the consequence of directed evolution,whereas intrinsic resistanc...Acquired resistance formation limits the efficacy of anti-cancer therapies.Acquired and intrinsic resistance differ conceptually.Acquired resistance is the consequence of directed evolution,whereas intrinsic resistance depends on the(stochastic)presence of pre-existing resistance mechanisms.Preclinical model systems are needed to study acquired drug resistance because they enable:(1)in depth functional studies;(2)the investigation of non-standard treatments for a certain disease condition(which is necessary to identify small groups of responders);and(3)the comparison of multiple therapies in the same system.Hence,they complement data derived from clinical trials and clinical specimens,including liquid biopsies.Many groups have successfully used drug-adapted cancer cell lines to identify and elucidate clinically relevant resistance mechanisms to targeted and cytotoxic anti-cancer drugs.Hence,we argue that drug-adapted cancer cell lines represent a preclinical model system in their own right that is complementary to other preclinical model systems and clinical data.展开更多
基金supported by the Natural Science Foundation of Hubei Province(no.2021CFB372 to Hua Xiong).
文摘Lung cancer is the leading cause of cancer-related deaths globally.In recent years,with the widespread use of genetic testing,epidermal growth factor receptor–tyrosine kinase inhibitor(EGFR-TKI)–targeted drugs have been efficacious to patients with lung adenocarcinoma exhibiting EGFR mutations.However,resistance to treatment is inevitable and eventually leads to tumor progression,recurrence,and reduction in the overall treatment efficacy.Lung cancer stem cells play a crucial role in the development of resistance toward EGFR-TKI–targeted therapy for lung adenocarcinoma.Lung cancer stem cells possess self-renewal,multilineage differentiation,and unlimited proliferation capabilities,which efficiently contribute to tumor formation and ultimately lead to tumor recurrence andmetastasis.In this study,we evaluated the origin,markers,stemness index,relevant classic studies,resistance mechanisms,related signaling pathways,and strategies for reversing lung cancer stem cell resistance to EGFR-TKIs to provide new insights on delaying or reducing resistance and to improve the treatment efficacy of patients with EGFR-mutated lung adenocarcinoma in the future.
基金Molecular epidemiology research of HIV-1 Drug resistance in China sponsored by the 973 program (2005CB523103) Molecular epidemiology research and new technologies in HIV surveillance in China sponsored by the 863 program (2006AA02Z418).
文摘To investigate the prevalence of drug-resistance mutations,resistance to antiretroviral drugs,and the subsequent virological response to therapy in treatment-naive and antiretroviral-treated patients infected with HIV/AIDS in Henan,China,a total of 431 plasma samples were collected in Queshan county between 2003 and 2004,from patients undergoing the antiretroviral regimen Zidovudine + Didanosine + Nevirapine(Azt+Ddi+Nvp).Personal information was collected by face to face interview.Viral load and genotypic drug resistance were tested.Drug resistance mutation data were obtained by analyzing patient-derived sequences through the HIVdb Program(http://hivdb.stanford.edu).Overall,38.5% of treatment-naive patients had undetectable plasma viral load(VL),the rate significantly increased to 61.9% in 0 to 6 months treatment patients(mean 3 months)(P<0.005)but again significantly decrease to 38.6% in 6 to 12 months treatment patients(mean 9 months)(P<0.001)and 40.0% in patients receiving more than 12 months treatment(mean 16 months)(P<0.005).The prevalence of drug resistance in patients who had a detectable VL and available sequences were 7.0%,48.6%,70.8%,72.3% in treatment-na?ve,0 to 6 months treatment,6 to 12 months treatment,and treatment for greater than 12 months patients,respectively.No mutation associated with resistance to Protease inhibitor(PI)was detected in this study.Nucleoside RT inhibitor(NRTI)mutations always emerged after non-nucleoside RT inhibitor(NNRTI)mutations,and were only found in patients treated for more than 6 months,with a frequency less than 5%,with the exception of mutation T215Y(12.8%,6/47)which occurred in patients treated for more than 12 months.NNRTI mutations emerged quickly after therapy begun,and increased significantly in patients treated for more than 6 months(P<0.005),and the most frequent mutations were K103N,V106A,Y181C,G190A.There had been optimal viral suppression in patients undergoing treatment for less than 6 months in Queshan,Henan.The drug resistance strains were highly prevalent in antiretroviral-treated patients,and increased with the continuation of therapy,with many patients encountering virological failure after 6 months therapy.
文摘Bacteriophages have a potentially important role to play in reducing the global incidence of Hospital Acquired Infection (HAI). Their use should be focused on reducing the use and over-use of antibiotics as part of integrated control measures in conjunction with various vaccination, sanitation procedures and prophylactic and treatment regimens. Bacteriophages offer exquisite specificity and efficacy in killing target bacterial strains, a phenomenon known for almost 100 years. However, their efficacy with respect to broad-spectrum antibiotics is poor due to the highly strain-selective nature of their killing and their rapid elimination from the body. Bacteriophage killing is a naturally-occurring process capable of limiting and eliminating bacterial populations in humans. This is achieved through exponential amplification of their number, if and when, they encounter a target bacterium. Unfortunately, processes employed for their commercial production today do not meet the same rigour as dictated for pharmaceutical products. Batch-to-batch reproducibility and molecular definition of target and phage strains must be demanded before their clinical use can become widespread. Elsewhere, historical data have demonstrated safety in humans beyond any doubt. Because patients continue to die in our healthcare centers internationally, the use of bacteriophage to help fight HAI should be reassessed. Here, relevant literature is reviewed.
文摘Acquired resistance formation limits the efficacy of anti-cancer therapies.Acquired and intrinsic resistance differ conceptually.Acquired resistance is the consequence of directed evolution,whereas intrinsic resistance depends on the(stochastic)presence of pre-existing resistance mechanisms.Preclinical model systems are needed to study acquired drug resistance because they enable:(1)in depth functional studies;(2)the investigation of non-standard treatments for a certain disease condition(which is necessary to identify small groups of responders);and(3)the comparison of multiple therapies in the same system.Hence,they complement data derived from clinical trials and clinical specimens,including liquid biopsies.Many groups have successfully used drug-adapted cancer cell lines to identify and elucidate clinically relevant resistance mechanisms to targeted and cytotoxic anti-cancer drugs.Hence,we argue that drug-adapted cancer cell lines represent a preclinical model system in their own right that is complementary to other preclinical model systems and clinical data.