期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant 被引量:1
1
作者 Meixu Han Haiyang Zhang +12 位作者 Mingchao Liu Jinqi Tang Xiaocheng Guo Weizheng Ren Yong Zhao Qingpei Yang Binglin Guo Qinwen Han Yulong Feng Zhipei Feng Honghui Wu Xitian Yang Deliang Kong 《Plant Diversity》 SCIE CAS CSCD 2024年第4期510-518,共9页
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ... Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions. 展开更多
关键词 Mycorrhizal strategy Nitrogen depletion Plant invasion Root nutrient acquisition strategy Symbiotic nitrogen fixation
下载PDF
Anderson's Cognitive Theory and Learning Strategy Studies in Second Language Acquisition 被引量:9
2
作者 Lu Wenpeng (Foreign Languages department, Northwest Normal University, Lanzhou, 730070, China) 《兰州大学学报(社会科学版)》 CSSCI 北大核心 2000年第S1期228-231,共4页
Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical... Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition. 展开更多
关键词 Anderson’s cognitive theory Anderson’s production systems learning strategy studies second language acquisition
下载PDF
Study on the Strategy of Pricing for Enterprise Merger and Acquisition
3
作者 Changqing Li Yan Zheng 《Chinese Business Review》 2004年第7期54-59,共6页
Enterprise merger and acquisition is one of the property right exchanges. This paper researches the strategy of pricing for enterprise merger and acquisition, displays finance decision-making model, program and method.
关键词 enterprise merger and acquisition strategy of pricing auction
下载PDF
Root phosphatase activity is a competitive trait affiliated with the conservation gradient in root economic space 被引量:1
4
作者 Boyuan Bi Qiulong Yin Zhanqing Hao 《Forest Ecosystems》 SCIE CSCD 2023年第2期279-286,共8页
Background:The diversity of resource acquisition strategies of plant roots determines the species coexistence patterns to a certain extent.However,few root physiological traits have been investigated,such as root phos... Background:The diversity of resource acquisition strategies of plant roots determines the species coexistence patterns to a certain extent.However,few root physiological traits have been investigated,such as root phosphatase activity(PA)that affects plant phosphorus(P)uptake.Methods:Root PA and classical root functional traits were investigated for 21 coexisting species in a deciduous broad-leaved forest in warm temperate-subtropical transition zone,China.We analyzed the root order variation of absorptive fine root PA,clarified the attribution of root PA in root economic space(RES)and the different P acquisition strategies of co-occurring species based on the multidimensional RES theory,and determined the dominant factors affecting interspecific variation in root PA.Results:There was no distinct pattern of PA variation with root order in the first three root orders of absorptive fine roots,and root PA was constrained by phylogeny.Root PA is a competitive trait affiliated with the conservation gradient in RES.The tight linkages among root PA,mycorrhizal colonization,diameter,specific root length,and nitrogen concentration suggested trade-offs among P acquisition strategies of co-occurring species,i.e.species with long and fine roots acquire inorganic P by actively exploring the soil and secreting phosphatase to mineralize and hydrolyze organic P,while species with short and thick roots obtain P mainly by investing C in mycorrhizal partners.Conclusions:Collectively,our study provides an insight into the forest species coexistence in climatic transition zones,i.e.species coexistence mechanisms based on diverse phosphorus acquisition strategies. 展开更多
关键词 Root phosphatase activity Root order Root economic space Phosphorus acquisition strategy Species coexistence
下载PDF
Variations in the natural 13C and 15N abundance of plants and soils under long-term N addition and precipitation reduction:interpretation of C and N dynamics
5
作者 Guoyong Yan Shijie Han +5 位作者 Mingxin Zhou Wenjing Sun Binbin Huang Honglin Wang Yajuan Xing Qinggui Wang 《Forest Ecosystems》 SCIE CSCD 2020年第4期646-658,共13页
Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plan... Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plants change in terrestrial ecosystems.However,howδ^(13)C andδ^(15)N abundances in plant life and soils respond to N addition and water availability change is still unclear.Thus,δ^(13)C andδ^(15)N abundances in plant life and soils were used to investigate the effects of long-time(10 years)N addition(+50 kg N·ha^(−1)·yr^(−1)and precipitation reduction(−30%of throughfall)in forest C and N cycling traits in a temperate forest in northern China.Results:We analyzed theδ^(13)C andδ^(15)N values of dominant plant foliage,litterfall,fungal sporophores,roots,and soils in the study.The results showed thatδ^(15)N values of foliage,litterfall,and surface soil layer’s(0–10 cm)total N were significantly increased by N addition,whileδ^(15)N values of fine roots and coarse roots were considerably decreased.Nitrogen addition also significantly increased theδ^(13)C value of fine roots and total N concentration of the surface soil layer compared with the control.The C concentration,δ^(13)C,andδ^(15)N values of foliage andδ^(15)N values of fine roots were significantly increased by precipitation reduction,while N concentration of foliage and litterfall significantly decreased.The combined effects of N addition and precipitation reduction significantly increased theδ^(13)C andδ^(15)N values of foliage as well as theδ^(15)N values of fine roots andδ^(13)C values of litterfall.Furthermore,foliarδ^(15)N values were significantly correlated with foliageδ^(13)C values,surface soilδ^(15)N values,surface soil C concentration,and N concentrations.Nitrogen concentrations andδ^(13)C values of foliage were significantly correlated withδ^(15)N values and N concentrations of fine roots.Conclusions:This indicates that plants increasingly take up the heavier 15N under N addition and the heavier 13C and 15N under precipitation reduction,suggesting that N addition and precipitation reduction may lead to more open forest ecosystem C and N cycling and affect plant nutrient acquisition strategies. 展开更多
关键词 δ^(13)C δ^(15)N N addition Precipitation reduction Nutrient acquisition strategies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部