Waterborne acrylic emulsions modified with organic siloxanes and aziridine crosslinker were synthesized and applied as coating of controlled release fertilizer. The free films were characterized and the nutrient relea...Waterborne acrylic emulsions modified with organic siloxanes and aziridine crosslinker were synthesized and applied as coating of controlled release fertilizer. The free films were characterized and the nutrient release profiles of the coated fertilizers were determined. The results show that methyl silicone oil and methylsilanolate sodium could not improve water resistance performance and glass transition temperature Tgof coatings, while the firmness is enhanced. Aziridine crosslinker improves the water resistance performance, firmness and Tg. Incorporation of methyl silicone oil and aziridine crosslinker gives an excellent aqueous acrylic emulsion for coated controlled release fertilizer, with the 30-day cumulative nutrient release reduced to 16% and an estimated nutrient release duration over 190 days. Therefore, this waterborne coating is promising to meet the requirements for controlled release of nutrient and environmental protection.展开更多
Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic characte...Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character.Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils,and a resin of poly(styrene-methyl-methacrylate-acrylic acid)used as water-based emulsion.Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions.The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion and cellulose suspension,leading to the co-precipitation of the composite material,which can be easily separated from the water phase.Composites with acrylic polymer/cellulose fibers in the proportions of 75:25,50:50 and 25:75 wt%were prepared.Composites were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),dynamic mechanical analysis(DMA)and water absorption tests.SEM analysis revealed a very good dispersion of the fibers without evidence of agglomeration,which led to superior mechanical properties.These results showed the effectiveness of the methodology and the potential of cellulose wood pulp and CNF as reinforcement fillers in fiberboard composites and any other high fiber-content materials.展开更多
Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a referen...Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a reference sample. 1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers. TEM demonstrates that there are some differences in the particle morphologies. AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10. The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier. Furthermore, with increasing amount of emulsifier, the surface free energy of the films first decreased and then increased, and the adhesion with glass plate is initially enhanced and then attenuated. The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.展开更多
Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymeriz...Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA,amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%,MMA is 40%,and added amount of N-hydroxymethyl acrylamide is 2.5%-3.0% and added amount of poly solidum maleate is 0.3%-0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymerization of N-hydroxymethyl acrylamide and acrylate,the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.展开更多
The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. ...The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.展开更多
Self-healable polyacrylamide-based hydrogels were prepared at room temperature via a one-step emulsion copolymerization of acrylamide(AM),dodecyl 2-methacryIate(DM),and 5-acetylaminopentyl acrylate(AAPA) using s...Self-healable polyacrylamide-based hydrogels were prepared at room temperature via a one-step emulsion copolymerization of acrylamide(AM),dodecyl 2-methacryIate(DM),and 5-acetylaminopentyl acrylate(AAPA) using sodium dodecyl sulfonate(SDS) as the emulsifier and ammonium persulfate(APS)as the initiator.The produced linear multi-block copolymer chains are composed of randomly-linked hydrophilic polyacrylamide segments(PAM) and hydrophobic segments constituted by DM and AAPA units(P(DM-co-AAPA)).The P(DM-co-AAPA) segments will self-aggregate into hydrophobic microdomains during the polymerization process driven by the hydrophobic interactions,and finally separate from water phase,acting as the crosslinks and leading to the formation of strong hydrogels with a storage modulus as high as 400 Pa.These hydrophobic microdomains will be dissolved in water when the temperature increases to 70℃,resulting in a temperature-responsive reversible sol-gel transition of the prepared hydrogels.Furthermore,the prepared hydrogels have excellent self-healing ability.The broken hydrogels can be automatically healed into a body with a same strength within 2-min's contact.This work provides a new simple way to prepare reversible physical crosslinked hydrogel with high strength and self-healing efficiency.展开更多
Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectro...Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.展开更多
Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acryl...Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.展开更多
基金Supported by the National 12th Five-Year Science and Technology Supporting Program(2011BAD11B01)the Research & Development Projects Cooperation Project of Chinese Academy of Sciences(YDJDBNJ-2012-023)
文摘Waterborne acrylic emulsions modified with organic siloxanes and aziridine crosslinker were synthesized and applied as coating of controlled release fertilizer. The free films were characterized and the nutrient release profiles of the coated fertilizers were determined. The results show that methyl silicone oil and methylsilanolate sodium could not improve water resistance performance and glass transition temperature Tgof coatings, while the firmness is enhanced. Aziridine crosslinker improves the water resistance performance, firmness and Tg. Incorporation of methyl silicone oil and aziridine crosslinker gives an excellent aqueous acrylic emulsion for coated controlled release fertilizer, with the 30-day cumulative nutrient release reduced to 16% and an estimated nutrient release duration over 190 days. Therefore, this waterborne coating is promising to meet the requirements for controlled release of nutrient and environmental protection.
文摘Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character.Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils,and a resin of poly(styrene-methyl-methacrylate-acrylic acid)used as water-based emulsion.Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions.The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion and cellulose suspension,leading to the co-precipitation of the composite material,which can be easily separated from the water phase.Composites with acrylic polymer/cellulose fibers in the proportions of 75:25,50:50 and 25:75 wt%were prepared.Composites were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),dynamic mechanical analysis(DMA)and water absorption tests.SEM analysis revealed a very good dispersion of the fibers without evidence of agglomeration,which led to superior mechanical properties.These results showed the effectiveness of the methodology and the potential of cellulose wood pulp and CNF as reinforcement fillers in fiberboard composites and any other high fiber-content materials.
基金Funded by Ministry of Education (No.2006-KL-008),and Qingxin Hanerchem Chemical Technology Co,Ltd.
文摘Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a reference sample. 1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers. TEM demonstrates that there are some differences in the particle morphologies. AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10. The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier. Furthermore, with increasing amount of emulsifier, the surface free energy of the films first decreased and then increased, and the adhesion with glass plate is initially enhanced and then attenuated. The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.
基金Project(2003B10506) supported by Guangdong Provincial Department of Science and Technology, China
文摘Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA,amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%,MMA is 40%,and added amount of N-hydroxymethyl acrylamide is 2.5%-3.0% and added amount of poly solidum maleate is 0.3%-0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymerization of N-hydroxymethyl acrylamide and acrylate,the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.
文摘The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.
基金supported by the Petro China Innovation Foundation(No.2014D-5006-0201)the National Natural Science Foundation of China(Nos.51473152 and 51573174)the Fundamental Research Funds for the Central Universities(Nos.WK2060200012,WK3450000001)
文摘Self-healable polyacrylamide-based hydrogels were prepared at room temperature via a one-step emulsion copolymerization of acrylamide(AM),dodecyl 2-methacryIate(DM),and 5-acetylaminopentyl acrylate(AAPA) using sodium dodecyl sulfonate(SDS) as the emulsifier and ammonium persulfate(APS)as the initiator.The produced linear multi-block copolymer chains are composed of randomly-linked hydrophilic polyacrylamide segments(PAM) and hydrophobic segments constituted by DM and AAPA units(P(DM-co-AAPA)).The P(DM-co-AAPA) segments will self-aggregate into hydrophobic microdomains during the polymerization process driven by the hydrophobic interactions,and finally separate from water phase,acting as the crosslinks and leading to the formation of strong hydrogels with a storage modulus as high as 400 Pa.These hydrophobic microdomains will be dissolved in water when the temperature increases to 70℃,resulting in a temperature-responsive reversible sol-gel transition of the prepared hydrogels.Furthermore,the prepared hydrogels have excellent self-healing ability.The broken hydrogels can be automatically healed into a body with a same strength within 2-min's contact.This work provides a new simple way to prepare reversible physical crosslinked hydrogel with high strength and self-healing efficiency.
基金PAKR and MS thank CSIR,New Delhi for funding this work under Emeritus Scientist Scheme
文摘Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.
基金financially supported by the Program for New Century Excellent Talents in Universitiesthe National Natural Science Foundation of China(No.21074088)
文摘Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.