The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell type...The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell types can function as an innate immune system within the brain and in that role influence cognitive function(Kaul et al.,2005).展开更多
The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action...The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.展开更多
In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously...In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously from a scale ANC and that below this scale the theory is a commutative one. Based on this assumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. The coefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.展开更多
In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of ...In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.展开更多
A reinterpretation of the well-known formula of the 'mass-velocity relation' is exactlyderived from a new viewpoint with new concepts, such as the finiteness of the transmitting velocityof force (TVF), effecti...A reinterpretation of the well-known formula of the 'mass-velocity relation' is exactlyderived from a new viewpoint with new concepts, such as the finiteness of the transmitting velocityof force (TVF), effective action, and the coupled effect of the TVF for two EM fields, etc. Then, atrue meaning hidden in the Lorentz factor is exploited : i.e., when a charged particle is moving at aspeed v under an EM field, the effective action exerted on it by the field varies inversely with thespeed ratio β= v / U, where U is the TVF, which probably is equal to the propagation velocity ofEM field. The actual reduction of the effective action gives a false impression of mass gain.Accordingly, it is a major mistake in orientation to ascribe the (genuine) electrodynamics of movingbodies to any observation, or to any motion of an observer, while disregarding the facts of mutualaction.展开更多
In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective ac...In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective action on the special gauge transformation with respect to the background field.Also,we formulate some open questions about a structure of divergences for a special type of regularization in the presence of the background field formalism.展开更多
We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1Dmodels.The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented ...We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1Dmodels.The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to themaximal order p=18 in the time of propagation(Monte Carlo time step),which substantially improves the convergence of discretized amplitudes to their exact continuum values.Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes,using the recursive Schrodinger equation approach.In addition to the general 1D quantum theory,developed Mathematica codes are capable of calculating effective actions for specific models,for general 2D and 3D potentials,as well as for a general many-body theory in arbitrary number of spatial dimensions.展开更多
Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the...Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most geometric characteristics of grains are ignored, resulting in the calculation accuracy that cannot guide practical production. Based on this, an improved grinding force model based on random grain geometric characteristics is proposed in this paper. Firstly, the surface topography model of CBN grinding wheel is established, and the effective grain determination mechanism in grinding zone is revealed. Based on the known grinding force model and mechanical behavior of interaction between grains and workpiece in different stages, the concept of grain effective action area is proposed. The variation mechanism of effective action area under the influence of grain geometric and spatial characteristics is deeply analyzed, and the calculation method under random combination of five influencing parameters is obtained. The numerical simulation is carried out to reveal the dynamic variation process of grinding force in grinding zone. In order to verify the theoretical model, the experiments of dry grinding Ti-6Al-4 V are designed. The experimental results show that under different machining parameters, the results of numerical calculation and experimental measurement are in good agreement, and the minimum error value is only 2.1 %, which indicates that the calculation accuracy of grinding force model meets the requirements and is feasible. This study will provide a theoretical basis for optimizing the wheel structure, effectively controlling the grinding force range, adjusting the grinding zone temperature and improving the workpiece machining quality in the industrial grinding process.展开更多
In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within t...In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within the framework of the Dyson-Schwinger equations(DSEs). The results from CJT effective action are compared with lattice QCD data. We find that, when μ is small, our results generally fit the lattice QCD data when T〉T_c,but show deviations at and below T_c. It can be concluded that the EoS of CJT is reliable when T〉T_c. Then,by adopting the hydrodynamic code UVH2+1, we compare the CJT results of the multiplicity and elliptic flow v2 with the PHENIX data and the results from the original EoS in UVH2+1. While the CJT results of multiplicities generally match the original UVH2+1 results and fit the experimental data, the CJT results of v2 are slightly larger than the original UVH2+1 results for centralities smaller than 40% and smaller than the original UVH2+1 results for higher centralities.展开更多
基金supported by National Institutes of Health Grant AA024484(to DLG)。
文摘The neuroimmune system of the brain:Early studies(1990’s)on the neurological consequences of human immunodeficiency virus-1(HIV-1)infection in the brain were instrumental in establishing that specific brain cell types can function as an innate immune system within the brain and in that role influence cognitive function(Kaul et al.,2005).
文摘The finiteness of superstring theory at each order in perturbation theory is considered with respect to the ten-dimensional effective action. The quantum consistency of the ten-dimensional superstring effective action is confirmed with an analysis of the perturbative expansion of the quartic sector. It is found to be compatible with the finiteness of reduced four-dimensional theory. Furthermore, implications for the validity of superstring perturbation theory at lower energies is considered.
文摘In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noneommutative effects start to be visible continuously from a scale ANC and that below this scale the theory is a commutative one. Based on this assumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. The coefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.
文摘In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.
文摘A reinterpretation of the well-known formula of the 'mass-velocity relation' is exactlyderived from a new viewpoint with new concepts, such as the finiteness of the transmitting velocityof force (TVF), effective action, and the coupled effect of the TVF for two EM fields, etc. Then, atrue meaning hidden in the Lorentz factor is exploited : i.e., when a charged particle is moving at aspeed v under an EM field, the effective action exerted on it by the field varies inversely with thespeed ratio β= v / U, where U is the TVF, which probably is equal to the propagation velocity ofEM field. The actual reduction of the effective action gives a false impression of mass gain.Accordingly, it is a major mistake in orientation to ascribe the (genuine) electrodynamics of movingbodies to any observation, or to any motion of an observer, while disregarding the facts of mutualaction.
基金supported by the Ministry of Science and Higher Education of the Russian Federation,agreement 07515-2022-289supported in parts by the Foundation for the Advancement of Theoretical Physics and Mathematics‘BASIS’,grant‘Young Russian Mathematics’。
文摘In this paper,we discuss some non-trivial relations for ordered exponentials on smooth Riemannian manifolds.As an example of application,we study the dependence of the four-dimensional quantum Yang–Mills effective action on the special gauge transformation with respect to the background field.Also,we formulate some open questions about a structure of divergences for a special type of regularization in the presence of the background field formalism.
基金The authors gratefully acknowledge useful discussions with Axel Pelster and Vladimir Slavni´c.This work was supported in part by the Ministry of Education and Science of the Republic of Serbia,under project No.ON171017,and bilateral project NAD-BEC funded jointly with the German Academic Exchange Service(DAAD),and by the European Commission under EU FP7 projects PRACE-1IP,HP-SEE and EGI-InSPIRE.
文摘We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1Dmodels.The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to themaximal order p=18 in the time of propagation(Monte Carlo time step),which substantially improves the convergence of discretized amplitudes to their exact continuum values.Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes,using the recursive Schrodinger equation approach.In addition to the general 1D quantum theory,developed Mathematica codes are capable of calculating effective actions for specific models,for general 2D and 3D potentials,as well as for a general many-body theory in arbitrary number of spatial dimensions.
基金supported by the National Natural Science Foundation of China(Nos.51975305,51905289,52105264)the Key Project of Shandong Province,China(No.ZR2020KE027)+1 种基金the Major Research Project of Shandong Province,China(Nos.2019GGX104040 and 2019GSF108236)the Natural Science Foundation of Shandong Province,China(No.ZR2021QE116).
文摘Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most geometric characteristics of grains are ignored, resulting in the calculation accuracy that cannot guide practical production. Based on this, an improved grinding force model based on random grain geometric characteristics is proposed in this paper. Firstly, the surface topography model of CBN grinding wheel is established, and the effective grain determination mechanism in grinding zone is revealed. Based on the known grinding force model and mechanical behavior of interaction between grains and workpiece in different stages, the concept of grain effective action area is proposed. The variation mechanism of effective action area under the influence of grain geometric and spatial characteristics is deeply analyzed, and the calculation method under random combination of five influencing parameters is obtained. The numerical simulation is carried out to reveal the dynamic variation process of grinding force in grinding zone. In order to verify the theoretical model, the experiments of dry grinding Ti-6Al-4 V are designed. The experimental results show that under different machining parameters, the results of numerical calculation and experimental measurement are in good agreement, and the minimum error value is only 2.1 %, which indicates that the calculation accuracy of grinding force model meets the requirements and is feasible. This study will provide a theoretical basis for optimizing the wheel structure, effectively controlling the grinding force range, adjusting the grinding zone temperature and improving the workpiece machining quality in the industrial grinding process.
基金Supported by National Natural Science Foundation of China(11447121,11475085,11535005,11690030)Fundamental Research Funds for the Central Universities(020414380074)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1501035B)Natural Science Foundation of Jiangsu Province(BK20130078,BK20130387)
文摘In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within the framework of the Dyson-Schwinger equations(DSEs). The results from CJT effective action are compared with lattice QCD data. We find that, when μ is small, our results generally fit the lattice QCD data when T〉T_c,but show deviations at and below T_c. It can be concluded that the EoS of CJT is reliable when T〉T_c. Then,by adopting the hydrodynamic code UVH2+1, we compare the CJT results of the multiplicity and elliptic flow v2 with the PHENIX data and the results from the original EoS in UVH2+1. While the CJT results of multiplicities generally match the original UVH2+1 results and fit the experimental data, the CJT results of v2 are slightly larger than the original UVH2+1 results for centralities smaller than 40% and smaller than the original UVH2+1 results for higher centralities.