Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper,...Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.展开更多
Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most ...Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.展开更多
In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MU...In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MUAP) and motor unit action potential train(MUAPT) are simulated based on the tripolar signal source model, and then the sEMG is obtained; secondly, the simulated sEMG signal is extracted from the mixed signals that consists of white noises, power frequency interference signal and electrocardio signal by independent component analysis (ICA) algorithms; lastly, the spikes corresponding to each motor unit action potential from the simulated sEMG signals were detected by applying the wavelet transform (WT) method. Simulation results showed that sEMG model could describe the physiological process of sEMG, ICA and WT methods could extract the sEMG signal and its features, which will lay a foundation for further classifying the MUAP.展开更多
基金China 973 Project,Grant number:2005CB724303Yunnan Education Department Project,Grant number:03Y3081
文摘Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.
基金Supported by Shaanxi Province Key Research and Development Project (2021GY-280)the National Natural Science Foundation of China (No.61834005,61772417,61802304)。
文摘Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.
基金The open project of the State Key Laboratory of Robotics and System(HIT)the open project of the State Key Laboratory of Cognitive Neuroscience and Learning and the Natural science fund for colleges and universities in Jiangsu Province+2 种基金 grant number: 10KJB510003the natural science fund in Changzhou City grant number: CJ20110023
文摘In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MUAP) and motor unit action potential train(MUAPT) are simulated based on the tripolar signal source model, and then the sEMG is obtained; secondly, the simulated sEMG signal is extracted from the mixed signals that consists of white noises, power frequency interference signal and electrocardio signal by independent component analysis (ICA) algorithms; lastly, the spikes corresponding to each motor unit action potential from the simulated sEMG signals were detected by applying the wavelet transform (WT) method. Simulation results showed that sEMG model could describe the physiological process of sEMG, ICA and WT methods could extract the sEMG signal and its features, which will lay a foundation for further classifying the MUAP.