By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions ...By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.展开更多
To alleviate the information overload in the product design process,this work proposes a multiaction-based method for constructing knowledge map. Since the relationships of knowledge are implicit in the collected user...To alleviate the information overload in the product design process,this work proposes a multiaction-based method for constructing knowledge map. Since the relationships of knowledge are implicit in the collected user activities,the method calculates the similarity according to the collected user activities.Three concepts,including knowledge,action and user,are explained first. Based on this,the similarity calculation method is illustrated in detail. The dependencies of actions and relations of the user are considered in the calculation method. Further,the approach of applying the constructed knowledge map to alleviate information overload is proposed. At last,the proposed method is validated by a knowledge search and result comparison experiment.展开更多
In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive a...In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.展开更多
文摘By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.
基金Supported by the National Natural Science Foundation of China(51375049)National Defense Basic Scientific Research(A222011A222013)
文摘To alleviate the information overload in the product design process,this work proposes a multiaction-based method for constructing knowledge map. Since the relationships of knowledge are implicit in the collected user activities,the method calculates the similarity according to the collected user activities.Three concepts,including knowledge,action and user,are explained first. Based on this,the similarity calculation method is illustrated in detail. The dependencies of actions and relations of the user are considered in the calculation method. Further,the approach of applying the constructed knowledge map to alleviate information overload is proposed. At last,the proposed method is validated by a knowledge search and result comparison experiment.
文摘In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.