Iron(II) tetra-(1,4-dithin)-porphyrazine, (FePz(dtn)4) is able to activate molecule oxygen for oxygenation degradation of rhodamine B (RhB) in an extensive pH region without light excitation. Experiments indicate that...Iron(II) tetra-(1,4-dithin)-porphyrazine, (FePz(dtn)4) is able to activate molecule oxygen for oxygenation degradation of rhodamine B (RhB) in an extensive pH region without light excitation. Experiments indicate that the RhB can be degraded nearly 52% in alkaline aqueous solution, bubbling with dioxygen for seven hours in the presence of FePz(dtn)4 and the hydrogen peroxides as an active intermediate were determined by DPD method. The catalyst is recyclable and the catalyst activity was maintained after 10 recycles.展开更多
Cobalt-rich perovskite oxides play a paramount role in catalyzing oxygen evolution reaction(OER)on account of their acceptable intrinsic activity but are still challenging due to the high costs and undesired stability...Cobalt-rich perovskite oxides play a paramount role in catalyzing oxygen evolution reaction(OER)on account of their acceptable intrinsic activity but are still challenging due to the high costs and undesired stability.In response to the defects,herein,the Mg-incorporated perovskite cobaltite SrCo_(0.6)Fe_(0.3M)g_(0.1)O_(3-δ)(SCFM-0.1)is proposed as a novel earth-abundant and durable OER electrocatalyst.A well-consolidated cubic-symmetry structure and more active oxygen intermediates are enabled upon Mg substitution.Hence,the optimized SCFM-0.1 perovskite oxide achieves prominent OER electrocatalytic performance,that is,a low overpotential of only 320 mV at 10 mA cm^(-2),a small Tafel slope of 65 mV dec^(-1),as well as an outstanding durability within 20 h,substantially outperforming that of the pristine SrCo_(0.7)Fe_(0.3)O_(3-δ)and benchmark Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)and IrO_(2) catalysts.The strong pHdependent behavior associated with lattice oxygen activation mechanism for SCFM-0.1 catalyst is also confirmed.This work paves a unique avenue to develop cost-effective and robust perovskite cobaltites for efficient OER electrocatalysis.展开更多
During the course of mungbean (Phaseolus radiatus L.) germination, the rate of ethylene production and the activity of ACC synthase (1_aminocyclopropane_1_carboxylic acid synthase, EC4.4.1.4) began to increase in the ...During the course of mungbean (Phaseolus radiatus L.) germination, the rate of ethylene production and the activity of ACC synthase (1_aminocyclopropane_1_carboxylic acid synthase, EC4.4.1.4) began to increase in the 5th day of germination, and reached its peak in the 10th day and then decreased. The ethylene production and the activity of ACC synthase were obviously promoted by 10 μmol/L exogenous IAA (indole_3_acetic acid). The production of superoxide radical (O -· 2) and hydrogen peroxide (H 2O 2) were also promoted by exogenous IAA, suggesting that there was some relationship between active oxygen production and the activity of ACC synthase induced by exogenous IAA. The production of ethylene and the activity of ACC synthase increased dramatically when the seedlings were treated with exogenous O -· 2, whereas the exogenous H 2O 2 had no effects on the production of ethylene and the activity of ACC synthase. Exogenous SOD (superoxide dismutase, one scavenger of O -· 2) could inhibit the production of ethylene and the activity of ACC synthase, but exogenous CAT (catalase) could not. So it was possible that IAA would stimulate the activity of ACC synthase by inducing the production of O -· 2 in germinating mungbean seedlings, and this might be one of the regulating mechanism of ethylene synthesis in higher plants; the production of H 2O 2 induced by IAA was not the cause of the increase of the activity of ACC synthase and the production of ethylene.展开更多
In order to understand the role of active oxygen species in mediating plant injuries induced by far-UV radiation, seedlings of Taxus cuspidata Sieb. et Zucc. were irradiated by far-UV rays in laboratory for 4 weeks. T...In order to understand the role of active oxygen species in mediating plant injuries induced by far-UV radiation, seedlings of Taxus cuspidata Sieb. et Zucc. were irradiated by far-UV rays in laboratory for 4 weeks. The production of organic free-radicals in detached needles, and the production of O-2(radical anion) and O-1(2) in isolated chloroplasts were detected weekly by electron spin resonance (ESR) to evaluate their relative importance. The results show that the cumulative effect of far-UV irradiation, is best indicated by the production of organic free radicals in the needles, O-2(radical anion) production in chloroplasts is the next. The enhancement of O-1(2) production in chloroplasts by the cumulative far-UV irradiation seems to be not so important as O-2(radical anion) in mediating injuries induced by, far-UV radiation because of its high background value.展开更多
[Objective] The research aimed to study the effects of 1-methylcyclopropene (1-MCP) and chitosan on active oxygen metabolism and quality of fresh-cut potato during storage. [Method] The fresh-cut potato slices were ...[Objective] The research aimed to study the effects of 1-methylcyclopropene (1-MCP) and chitosan on active oxygen metabolism and quality of fresh-cut potato during storage. [Method] The fresh-cut potato slices were respectively treated with 1- MCP (2 μl/L), chitosan or 1-MCP + chitosan. During the storage period, the contents of superoxide anion (02), malondialdehyde (MDA), hydrogen dioxide (H202) and Vita- min C (Vc), the activities of polyphenol oxidase (PPO), peroxydase (POD) and super- oxide dismutase (SOD) as well as the respiratory rate of the fresh-cut potatoes in all the treatments were determined every day. The fresh-cut potato slices treated without any reagents were used as control. [Result] 1-MCP Treated could significantly de- creased the respiratory rate, PPO activity and the accumulations of 02 , H202 and MDA, increased the activities of SOD and POD and slowed down Vc content reduc- tion. On the contrary, potato treated with chitosan significantly inhibited the POD activi- ty in fresh-cut potato. Compared with the control, the combination of 1-MCP and chi- tosan showed a little but not significant better effects on potato preservation. [Conclu- sion] 1-MCP Treated showed the best effects on potato preservation.展开更多
Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then...Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.展开更多
Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in...Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.展开更多
The changes in content of Ca2 + and CaM, Ca2 + -ATPase activity and active oxygen metabolism during strawberry (Fragaria ananassa Duch. cv. Chunxing) fruits maturation and senescence were investigated in this study. T...The changes in content of Ca2 + and CaM, Ca2 + -ATPase activity and active oxygen metabolism during strawberry (Fragaria ananassa Duch. cv. Chunxing) fruits maturation and senescence were investigated in this study. The results showed that the soluble Ca2+ content and SOD activity in fruits tended to decline and O2 production rate to increase, the Ca2 + -ATPase activity peaked at first and then declined during fruits maturation and senescence. There were the highest CaM content at white stage in preharvest fruits and at marked senescence stage in postharvest ones. The above biochemical changes in fruits stored at low temperature (4℃)were slower than those stored at normal temperature(25℃). Thus, it indicated that the stimulation of calcium messenger system and accumulation of active oxygen free radical were closely related to fruits maturation and senescence.展开更多
La_(2)O_(3) catalyzed oxidative coupling of methane(OCM) is a promising process that converts methane directly to valuable C_(2)(ethylene and ethane) products. Our online MS transient study results indicate that prist...La_(2)O_(3) catalyzed oxidative coupling of methane(OCM) is a promising process that converts methane directly to valuable C_(2)(ethylene and ethane) products. Our online MS transient study results indicate that pristine surface without carbonate species demonstrates a higher selectivity to C_(2) products, and a lower light-off temperature as well. Further study is focused on carbonate-free La_(2)O_(3) catalyst surface for identification of active oxygen species associated with such products behavior. XPS reveals unique oxygen species with O 1 s binding energy of 531.5 e V correlated with OCM catalytic activity and carbonates removal. However, indicated thermal stability of this species is much higher than the surface peroxide or superoxide structures proposed by earlier computation models. Motivated by experimental results,DFT calculations reveal a new more stable peroxide structure, formed at the subsurface hexacoordinate lattice oxygen sites, with energy 2.18 e V lower than the previous models. The new model of subsurface peroxide provides a perspective for understanding of methyl radicals formation and C_(2) products selectivity in OCM over La_(2)O_(3) catalyst.展开更多
To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective...To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.展开更多
Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al...Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al2O3-supported Pd single-atom catalyst leads to higher activity and selectivity compared to Pd nanoparticles for the oxidation of cinnamyl alcohol.The Al2O3 support used in this study is rich in coordinately unsaturated Al3+sites,which are apt for binding to Pd atoms through oxygen bridges and present a distinct metal-support interaction(MSI).The suitable MSI then leads to a unique electronic characteristic of the Pd single atoms,which can be confirmed via X-ray photoelectron spectroscopy,normalized X-ray absorption near-edge structure,and diffuse reflectance Fourier transform infrared spectroscopy.Moreover,this unique electronic state is proposed to be responsible for its high catalytic activity.With the help of in-situ UV-vis spectra and electron spin resonance spectra,a specific alcohol oxidation route with O2 activation mechanism is then identified.Active oxygen species behaving chemically like singlet-O2 are generated from the interaction of O2 with Pd1/Al2O3,and then oxidize the partially dehydrogenated intermediates produced by the adsorbed allylic alcohols and Pd atoms to the desired alkenyl aldehyde.This work provides a promising path for the design and development of high-activity catalysts for aerobic oxidation reactions.展开更多
Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × ...Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame'. The present study aimed at exploring the antioxidant capacity in roots of spiraeas and revealing their adaptability to salt-alkali stress. Results indicate that the oxygen free radicals contents, electrolyte leakage rates and MDA contents in roots of Spiraea × bumalda 'Gold Mound' and Spiraea × bumalda 'Gold Flame' show an increasing tendency with the increases of the salinity and pH value, whereas the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) all increased firstly and then decreased. With the increase in intensity of salt-alkali stress, the CAT activity in roots of Spiraea × bumalda ‘Gold Flame' is higher and the increasing extents in the oxygen free radicals contents, electrolyte leakage rates as well as MDA contents are lower compared with Spiraea × bumalda ‘Gold Mound', indicating that Spiraea × bumalda ‘Gold Flame' has a stronger antioxidant capacity.展开更多
In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations...In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.展开更多
Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially des...Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs.展开更多
Tuning the coordination environment is the research axis of single atom catalysts (SACs). SACs are commonly stabilized by various defects from support. Here, we report a lattice confined Pd SAC using MnO_(2) as suppor...Tuning the coordination environment is the research axis of single atom catalysts (SACs). SACs are commonly stabilized by various defects from support. Here, we report a lattice confined Pd SAC using MnO_(2) as support. Compared with the Pd clusters anchored on the surface, the lattice confined Pd single atoms allows spontaneous exaction of surrounding lattice oxygen at room temperature when employed in CO oxidation. The MnO_(2) supported Pd SAC exhibited a high turnover frequency of 0.203 s^(−1) at low reaction temperature, which is higher than that of recently reported Pd SACs. Theoretical calculations also confirmed the confined monatomic Pd activate lattice oxygen with an ultralow energy barrier. Our results illustrate that the unique coordination environment of single atom provided by lattice confinement is promising to boost the activity of SACs.展开更多
Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat...Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.展开更多
Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen co...Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen concentration has been used as an effective way. Oxygen needs to mix in liquid lead uniformly and quickly. To enhance oxygen transport in liquid lead, nanoparticles are added to the liquid metal. In the current study, a lattice Boltzmann method is applied to investigate natural convection of copper/lead and aluminum oxide/lead in two-dimensional simplified container. Two thermal boundary cases are evaluated in order to check the effect of different natural convection flow patterns on oxygen transport. Some useful information are obtained such as improvement in natural convection and reduction in oxygen equilibrium time.展开更多
Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the ...Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the structure and stability of the most stable(111) surface termination of CeO2 modified by TM ions was determined. Except for Zr and Pt dopants that preserve octahedral oxygen coordination, the TM dopants prefer a square-planar coordination when substituting the surface Ce ions. The surface construction from octahedral to square-planar is facile for all TM dopants, except for Pt(1.14 e V) and Zr(square-planar coordination unstable). Typically, the ionic radius of tetravalent TM cations is much smaller than that of Ce4+, resulting a significant tensile-strained lattice and explaining the lowered oxygen vacancy formation energy. Except for Zr, the square-planar structure is the preferred one when one oxygen vacancy is created. Thermodynamic analysis shows that TM-doped CeO2 surfaces contain oxygen defects under typical conditions of environmental catalysis. A case of practical importance is the facile lattice oxygen activation in Zr-doped CeO2(111), which benefits CO oxidation. The findings emphasize the origin of lattice oxygen activation and the preferred location of TM dopants in TM-ceria solid solution catalysts.展开更多
Applying quantitative temporal analysis of products reactor measurements, we studied the reactive removal of active oxygen present on Au/TiO2 catalysts after calcination at elevated temperatures (400 °C) by CO...Applying quantitative temporal analysis of products reactor measurements, we studied the reactive removal of active oxygen present on Au/TiO2 catalysts after calcination at elevated temperatures (400 °C) by CO pulses and its replenishment by O2 pulses at 80 °C, focusing on the nature of the active oxygen species. In contrast to previous studies, which mainly focused on and clarified the nature of the active oxygen species for the catalytic CO oxidation, which is reversibly formed and replenished under typical reaction conditions, this study demonstrates that directly after calcina‐tion an additional oxygen species is present. This species is also active for the CO oxidation, but it is not or only very little formed under typical reaction conditions. Implications of these results on the mechanistic understanding of the CO oxidation on Au/TiO2, in particular on the role of different active oxygen species, will be discussed.展开更多
The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases fr...The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (Or) within the a-IGZO layer is suppressed by increasing Po2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing Po2. Therefore, the improved interface quality with increasing Po2 during the channel layer deposition can be attributed to the reduction of interface Ov-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs.展开更多
文摘Iron(II) tetra-(1,4-dithin)-porphyrazine, (FePz(dtn)4) is able to activate molecule oxygen for oxygenation degradation of rhodamine B (RhB) in an extensive pH region without light excitation. Experiments indicate that the RhB can be degraded nearly 52% in alkaline aqueous solution, bubbling with dioxygen for seven hours in the presence of FePz(dtn)4 and the hydrogen peroxides as an active intermediate were determined by DPD method. The catalyst is recyclable and the catalyst activity was maintained after 10 recycles.
基金supported by the National Natural Science Foundation of China(No.22108043)Natural Science Foundation of Guangdong Province,China(No.2023A1515012711).
文摘Cobalt-rich perovskite oxides play a paramount role in catalyzing oxygen evolution reaction(OER)on account of their acceptable intrinsic activity but are still challenging due to the high costs and undesired stability.In response to the defects,herein,the Mg-incorporated perovskite cobaltite SrCo_(0.6)Fe_(0.3M)g_(0.1)O_(3-δ)(SCFM-0.1)is proposed as a novel earth-abundant and durable OER electrocatalyst.A well-consolidated cubic-symmetry structure and more active oxygen intermediates are enabled upon Mg substitution.Hence,the optimized SCFM-0.1 perovskite oxide achieves prominent OER electrocatalytic performance,that is,a low overpotential of only 320 mV at 10 mA cm^(-2),a small Tafel slope of 65 mV dec^(-1),as well as an outstanding durability within 20 h,substantially outperforming that of the pristine SrCo_(0.7)Fe_(0.3)O_(3-δ)and benchmark Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)and IrO_(2) catalysts.The strong pHdependent behavior associated with lattice oxygen activation mechanism for SCFM-0.1 catalyst is also confirmed.This work paves a unique avenue to develop cost-effective and robust perovskite cobaltites for efficient OER electrocatalysis.
文摘During the course of mungbean (Phaseolus radiatus L.) germination, the rate of ethylene production and the activity of ACC synthase (1_aminocyclopropane_1_carboxylic acid synthase, EC4.4.1.4) began to increase in the 5th day of germination, and reached its peak in the 10th day and then decreased. The ethylene production and the activity of ACC synthase were obviously promoted by 10 μmol/L exogenous IAA (indole_3_acetic acid). The production of superoxide radical (O -· 2) and hydrogen peroxide (H 2O 2) were also promoted by exogenous IAA, suggesting that there was some relationship between active oxygen production and the activity of ACC synthase induced by exogenous IAA. The production of ethylene and the activity of ACC synthase increased dramatically when the seedlings were treated with exogenous O -· 2, whereas the exogenous H 2O 2 had no effects on the production of ethylene and the activity of ACC synthase. Exogenous SOD (superoxide dismutase, one scavenger of O -· 2) could inhibit the production of ethylene and the activity of ACC synthase, but exogenous CAT (catalase) could not. So it was possible that IAA would stimulate the activity of ACC synthase by inducing the production of O -· 2 in germinating mungbean seedlings, and this might be one of the regulating mechanism of ethylene synthesis in higher plants; the production of H 2O 2 induced by IAA was not the cause of the increase of the activity of ACC synthase and the production of ethylene.
文摘In order to understand the role of active oxygen species in mediating plant injuries induced by far-UV radiation, seedlings of Taxus cuspidata Sieb. et Zucc. were irradiated by far-UV rays in laboratory for 4 weeks. The production of organic free-radicals in detached needles, and the production of O-2(radical anion) and O-1(2) in isolated chloroplasts were detected weekly by electron spin resonance (ESR) to evaluate their relative importance. The results show that the cumulative effect of far-UV irradiation, is best indicated by the production of organic free radicals in the needles, O-2(radical anion) production in chloroplasts is the next. The enhancement of O-1(2) production in chloroplasts by the cumulative far-UV irradiation seems to be not so important as O-2(radical anion) in mediating injuries induced by, far-UV radiation because of its high background value.
文摘[Objective] The research aimed to study the effects of 1-methylcyclopropene (1-MCP) and chitosan on active oxygen metabolism and quality of fresh-cut potato during storage. [Method] The fresh-cut potato slices were respectively treated with 1- MCP (2 μl/L), chitosan or 1-MCP + chitosan. During the storage period, the contents of superoxide anion (02), malondialdehyde (MDA), hydrogen dioxide (H202) and Vita- min C (Vc), the activities of polyphenol oxidase (PPO), peroxydase (POD) and super- oxide dismutase (SOD) as well as the respiratory rate of the fresh-cut potatoes in all the treatments were determined every day. The fresh-cut potato slices treated without any reagents were used as control. [Result] 1-MCP Treated could significantly de- creased the respiratory rate, PPO activity and the accumulations of 02 , H202 and MDA, increased the activities of SOD and POD and slowed down Vc content reduc- tion. On the contrary, potato treated with chitosan significantly inhibited the POD activi- ty in fresh-cut potato. Compared with the control, the combination of 1-MCP and chi- tosan showed a little but not significant better effects on potato preservation. [Conclu- sion] 1-MCP Treated showed the best effects on potato preservation.
基金funded by the National Natural Science Fundation of China (30840016)the Natural Science Fundation of Jiangsu Province, China (BK 2010310)the Natural Science Fundation for Colleges and Universities in Jiangsu Province, China (10KJB550004)
文摘Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.
基金This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, Ministry of Science and Technology of China (No.2014CB932700), the National Natural Science Foundation of China (No.21603208, No.21573206, and No.51371164), the China Postdoctoral Science Foundation (No.2015M580536, No.2016T90569), Key Research Program of Frontier Sciences, CAS (QYZDBSSW- SLH017), Strategic Priority Research Program B of the CAS (No.XDB01020000), Hefei Science Center, CAS (No.2015HSC-UP016), and Fundamental Research Funds for the Central Universities.
文摘Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.
基金the National Natural Science Foundation of China ( No.30270933).
文摘The changes in content of Ca2 + and CaM, Ca2 + -ATPase activity and active oxygen metabolism during strawberry (Fragaria ananassa Duch. cv. Chunxing) fruits maturation and senescence were investigated in this study. The results showed that the soluble Ca2+ content and SOD activity in fruits tended to decline and O2 production rate to increase, the Ca2 + -ATPase activity peaked at first and then declined during fruits maturation and senescence. There were the highest CaM content at white stage in preharvest fruits and at marked senescence stage in postharvest ones. The above biochemical changes in fruits stored at low temperature (4℃)were slower than those stored at normal temperature(25℃). Thus, it indicated that the stimulation of calcium messenger system and accumulation of active oxygen free radical were closely related to fruits maturation and senescence.
基金the Key Projects of Shanghai Science and Technology Commission (18JC1412100)the National Natural Science Foundation of China (No. 91745105, 22072092, 92045301)+2 种基金the startup funding provided by Shanghai Tech University for funding their participation in this workfunding provided through The Shell Foundation Grants (No. PT66201)the support from Analytical Instrumentation Center (contract no. SPSTAIC10112914), SPST, Shanghai Tech University。
文摘La_(2)O_(3) catalyzed oxidative coupling of methane(OCM) is a promising process that converts methane directly to valuable C_(2)(ethylene and ethane) products. Our online MS transient study results indicate that pristine surface without carbonate species demonstrates a higher selectivity to C_(2) products, and a lower light-off temperature as well. Further study is focused on carbonate-free La_(2)O_(3) catalyst surface for identification of active oxygen species associated with such products behavior. XPS reveals unique oxygen species with O 1 s binding energy of 531.5 e V correlated with OCM catalytic activity and carbonates removal. However, indicated thermal stability of this species is much higher than the surface peroxide or superoxide structures proposed by earlier computation models. Motivated by experimental results,DFT calculations reveal a new more stable peroxide structure, formed at the subsurface hexacoordinate lattice oxygen sites, with energy 2.18 e V lower than the previous models. The new model of subsurface peroxide provides a perspective for understanding of methyl radicals formation and C_(2) products selectivity in OCM over La_(2)O_(3) catalyst.
文摘To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.
文摘Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al2O3-supported Pd single-atom catalyst leads to higher activity and selectivity compared to Pd nanoparticles for the oxidation of cinnamyl alcohol.The Al2O3 support used in this study is rich in coordinately unsaturated Al3+sites,which are apt for binding to Pd atoms through oxygen bridges and present a distinct metal-support interaction(MSI).The suitable MSI then leads to a unique electronic characteristic of the Pd single atoms,which can be confirmed via X-ray photoelectron spectroscopy,normalized X-ray absorption near-edge structure,and diffuse reflectance Fourier transform infrared spectroscopy.Moreover,this unique electronic state is proposed to be responsible for its high catalytic activity.With the help of in-situ UV-vis spectra and electron spin resonance spectra,a specific alcohol oxidation route with O2 activation mechanism is then identified.Active oxygen species behaving chemically like singlet-O2 are generated from the interaction of O2 with Pd1/Al2O3,and then oxidize the partially dehydrogenated intermediates produced by the adsorbed allylic alcohols and Pd atoms to the desired alkenyl aldehyde.This work provides a promising path for the design and development of high-activity catalysts for aerobic oxidation reactions.
基金supported by Innovation Team Project of Northeast Agricultural University of P. R. China (CXZ004-3)Science Foundation of Heilongjiang Province (C2007-16)
文摘Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame'. The present study aimed at exploring the antioxidant capacity in roots of spiraeas and revealing their adaptability to salt-alkali stress. Results indicate that the oxygen free radicals contents, electrolyte leakage rates and MDA contents in roots of Spiraea × bumalda 'Gold Mound' and Spiraea × bumalda 'Gold Flame' show an increasing tendency with the increases of the salinity and pH value, whereas the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) all increased firstly and then decreased. With the increase in intensity of salt-alkali stress, the CAT activity in roots of Spiraea × bumalda ‘Gold Flame' is higher and the increasing extents in the oxygen free radicals contents, electrolyte leakage rates as well as MDA contents are lower compared with Spiraea × bumalda ‘Gold Mound', indicating that Spiraea × bumalda ‘Gold Flame' has a stronger antioxidant capacity.
文摘In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.
基金supported by the National Key Research and Development Program of China (Project No.2018YFB1502903)。
文摘Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs.
基金X.Liao gratefully thanks the support from the National Natural Science Foundation of China(No.21706216)the Sichuan Science and Technology Program(2020YFG0162)+3 种基金the Young Scholar Project in Xihua University.X.Li acknowledges the support from the National Natural Science Foundation of China(No.21972163)the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program,and the Development Fund for Shanghai Talents.Z.Jiang acknowledges financial support from the Joint Fund U1732267.M.Y.thanks the JSPS KAKENHI(No.JP 18H05517)JST-CREST for financial supports,and Riken SPring-8 for the approval of the SRXRD measurement(20190028)EXAFS studies were carried out at the BL14W1 beamline in the Shanghai Synchrotron Radiation Facility[63],Shanghai Institute of Applied Physics,China(16ssr-f00787).X.Liao gratefully thanks the useful discussion with Ya Wang and Yanmin Liu.
文摘Tuning the coordination environment is the research axis of single atom catalysts (SACs). SACs are commonly stabilized by various defects from support. Here, we report a lattice confined Pd SAC using MnO_(2) as support. Compared with the Pd clusters anchored on the surface, the lattice confined Pd single atoms allows spontaneous exaction of surrounding lattice oxygen at room temperature when employed in CO oxidation. The MnO_(2) supported Pd SAC exhibited a high turnover frequency of 0.203 s^(−1) at low reaction temperature, which is higher than that of recently reported Pd SACs. Theoretical calculations also confirmed the confined monatomic Pd activate lattice oxygen with an ultralow energy barrier. Our results illustrate that the unique coordination environment of single atom provided by lattice confinement is promising to boost the activity of SACs.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.30922010302)the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397)。
文摘Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.
基金the financial support from the office of Vice-President for Research at University of Nevada-Las Vegas
文摘Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen concentration has been used as an effective way. Oxygen needs to mix in liquid lead uniformly and quickly. To enhance oxygen transport in liquid lead, nanoparticles are added to the liquid metal. In the current study, a lattice Boltzmann method is applied to investigate natural convection of copper/lead and aluminum oxide/lead in two-dimensional simplified container. Two thermal boundary cases are evaluated in order to check the effect of different natural convection flow patterns on oxygen transport. Some useful information are obtained such as improvement in natural convection and reduction in oxygen equilibrium time.
基金supported by The Netherlands Organization for Scientific Research(NWO)through a Vici grant and Nuffic fundingfunding from the European Union’s Horizon 2020 research and innovation programme under grant No.686086(Partial-PGMs)。
文摘Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the structure and stability of the most stable(111) surface termination of CeO2 modified by TM ions was determined. Except for Zr and Pt dopants that preserve octahedral oxygen coordination, the TM dopants prefer a square-planar coordination when substituting the surface Ce ions. The surface construction from octahedral to square-planar is facile for all TM dopants, except for Pt(1.14 e V) and Zr(square-planar coordination unstable). Typically, the ionic radius of tetravalent TM cations is much smaller than that of Ce4+, resulting a significant tensile-strained lattice and explaining the lowered oxygen vacancy formation energy. Except for Zr, the square-planar structure is the preferred one when one oxygen vacancy is created. Thermodynamic analysis shows that TM-doped CeO2 surfaces contain oxygen defects under typical conditions of environmental catalysis. A case of practical importance is the facile lattice oxygen activation in Zr-doped CeO2(111), which benefits CO oxidation. The findings emphasize the origin of lattice oxygen activation and the preferred location of TM dopants in TM-ceria solid solution catalysts.
文摘Applying quantitative temporal analysis of products reactor measurements, we studied the reactive removal of active oxygen present on Au/TiO2 catalysts after calcination at elevated temperatures (400 °C) by CO pulses and its replenishment by O2 pulses at 80 °C, focusing on the nature of the active oxygen species. In contrast to previous studies, which mainly focused on and clarified the nature of the active oxygen species for the catalytic CO oxidation, which is reversibly formed and replenished under typical reaction conditions, this study demonstrates that directly after calcina‐tion an additional oxygen species is present. This species is also active for the CO oxidation, but it is not or only very little formed under typical reaction conditions. Implications of these results on the mechanistic understanding of the CO oxidation on Au/TiO2, in particular on the role of different active oxygen species, will be discussed.
基金Supported by the National Basic Research Program of China under Grant Nos 2010CB327504,2011CB922100 and2011CB301900the National Natural Science Foundation of China under Grant Nos 11104130 and 61322112+2 种基金the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011556 and BK2011050the Priority Academic Program Development of Jiangsu Higher Education Institutionsand the NUPTSF Grant Nos NY213069 and NY214028
文摘The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (Or) within the a-IGZO layer is suppressed by increasing Po2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing Po2. Therefore, the improved interface quality with increasing Po2 during the channel layer deposition can be attributed to the reduction of interface Ov-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs.