Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a...Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a relative pressure range from 10 6to 1. The regularization method according to Density Functional Theory (DFT) wasemployed to calculate the pore size distribution in the samples. Their specific surfaceareas were calculated by BET method, micropore volume and microporous specificsurface area calculated by t-plot method and MPD by Horvath-Kawazoe equation. Mi-cropore volume of rayon-based ACF was higher than that of other samples. The staticand dynamic adsorption capacity for formaldehyde on different ACFs was determined.The results show that steam activated Rayon-based A CFs had higher adsorption capac-ity than that of steam and KOH activated PAN-A CFs. Breakthrough curves illustratedthat Rayon-ACFs had longer breakthrough time, thus they possessed higher adsorp-tion capacity for formaldehyde than that of PAN-ACFs. The entire sample had smalladsorption capacity and short breakthrough time for water. Rayon-A CFs had exccl-lent adsorption selectivity for formaldehyde than PAN-ACFs. And the samples withhigh surface areas had relatively high adsorption capacity for formaldehyde. Elementaicontent of different A CFs were performed. Rayon-based A CFs contained more oxygenthan PAN-ACFs, which may be attributed to their excellent adsorption capacity forformaldehyde.展开更多
文摘Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a relative pressure range from 10 6to 1. The regularization method according to Density Functional Theory (DFT) wasemployed to calculate the pore size distribution in the samples. Their specific surfaceareas were calculated by BET method, micropore volume and microporous specificsurface area calculated by t-plot method and MPD by Horvath-Kawazoe equation. Mi-cropore volume of rayon-based ACF was higher than that of other samples. The staticand dynamic adsorption capacity for formaldehyde on different ACFs was determined.The results show that steam activated Rayon-based A CFs had higher adsorption capac-ity than that of steam and KOH activated PAN-A CFs. Breakthrough curves illustratedthat Rayon-ACFs had longer breakthrough time, thus they possessed higher adsorp-tion capacity for formaldehyde than that of PAN-ACFs. The entire sample had smalladsorption capacity and short breakthrough time for water. Rayon-A CFs had exccl-lent adsorption selectivity for formaldehyde than PAN-ACFs. And the samples withhigh surface areas had relatively high adsorption capacity for formaldehyde. Elementaicontent of different A CFs were performed. Rayon-based A CFs contained more oxygenthan PAN-ACFs, which may be attributed to their excellent adsorption capacity forformaldehyde.