期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
Computation of Diffusion Activation Energies of C, N in γFe 被引量:2
1
作者 苏文勇 张瑞林 邵彬 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期105-108,共4页
A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rig... A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion. 展开更多
关键词 diffusion active energy empirical electron theory electronic structure
下载PDF
Role of activation energies of individual phases in two-phase range on constitutive equation of Zr-2.5Nb-0.5Cu alloy 被引量:2
2
作者 K.K.SAXENA S.K.JHA +4 位作者 V.PANCHOLI G.P.CHAUDHARI D.SRIVASTAVA G.K.DEY N.SAIBABA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期172-183,共12页
Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on... Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy in the temperature range of 700-925 ℃ and strain rate range of 10-2-10 s-l, Flow stress data of the single phase were extrapolated in the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated using calculated flow stress data in the two-phase range, Comparison of activation energies revealed that a phase is the dominant phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental results in terms of correlation coefficient (R) and average absolute relative error (AARE). 展开更多
关键词 Zr-2.5Nb-0.5Cu alloy hot deformation activation energy constitutive equation two-phase material
下载PDF
Assessment of the apparent activation energies for gas/solid reactions—carbonate decomposition 被引量:1
3
作者 Jianhua Liu and Jiayun ZhangMetallurgical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期25-29,共5页
The guidelines for assessing the apparent activation energies of gas/solidreactions have been proposed based on the experimental results from literatures. In CO_2 free inletgas flow, CaCO_3 decomposition between 950 a... The guidelines for assessing the apparent activation energies of gas/solidreactions have been proposed based on the experimental results from literatures. In CO_2 free inletgas flow, CaCO_3 decomposition between 950 and 1250 K with thin sample layer could be controlled bythe interfacial chemical reaction with apparent activation energy E = (215+-10) KJ/mol and E=(200+-10) kJ/mol at T = 813 to 1020 K, respectively. With relatively thick sample layer between 793and 1273 K, the CaCO_3 decomposition could be controlled by one or more steps involvingself-cooling, nucleation, intrinsic diffusion and heat transfer of gases, and E could vary between147 and 190 kJ/mol. In CO_2 containing inlet gas flow (5 percent-100 percent of CO_2), E wasdetermined to be varied from 949 to 2897 kJ/mol. For SrCO_3 and BaCO_3 decompositions controlled bythe interfacial chemical reaction, E was (213+-15) kJ/mol (1000-1350K) and (305+-15) kJ/mol(1260-1400 K), respectively 展开更多
关键词 ASSESSMENT activation energy DECOMPOSITION CARBONATE
下载PDF
Revealing the correlation between adsorption energy and activation energy to predict the catalytic activity of metal oxides for HMX using DFT
4
作者 Xiurong Yang Chi Zhang +6 位作者 Wujing Jin Zhaoqi Guo Hongxu Gao Shiyao Niu Fengqi Zhao Bo Liu Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期262-270,共9页
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate... Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost. 展开更多
关键词 Density functional theory HMX Metal oxides Adsorption energy activation energy
下载PDF
Molecular Dynamics, Physical Properties, Diffusion Coefficients and Activation Energy of the Lithium Oxide (Li-O) and Sodium Oxide (Na-O) Electrolyte (Cathode)
5
作者 Alain Second Dzabana Honguelet Abel Dominique Eboungabeka Timothée Nsongo 《Advances in Materials Physics and Chemistry》 CAS 2024年第9期213-234,共22页
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ... This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O. 展开更多
关键词 Molecular Dynamics Diffusion Coefficients activation Energy Lithium Oxide Sodium Oxide Lennard Jones Potential Data File Atomic and Charge Models CATHODE LAMMPS
下载PDF
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)
6
作者 Alain Second Dzabana Honguelet Timothée Nsongo +1 位作者 Bitho Rodongo Earvin Loumbandzila 《Modeling and Numerical Simulation of Material Science》 2024年第1期39-57,共19页
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi... This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed. 展开更多
关键词 Molecular Dynamics Diffusion Coefficients activation Energy LITHIUM Alkali Metals MEAM Potential
下载PDF
Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices
7
作者 Austin Ikechukwu Gbasouzor Sam Nna Omenyi +1 位作者 Sabuj Mallik Jude E. Njoku 《World Journal of Engineering and Technology》 2024年第1期213-228,共16页
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz... This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices. 展开更多
关键词 activation Energy Diffusion Coefficients Ginger Rhizomes Drying Model Drying Time Moisture Ratio Thin Layer
下载PDF
Standard-state entropies and their impact on the potential-dependent apparent activation energy in electrocatalysis
8
作者 Kai S.Exner 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期247-254,I0008,共9页
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t... The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments. 展开更多
关键词 ELECTROCATALYSIS Standard-state entropy Microkinetic modeling Apparent activation energy Degree of rate control
下载PDF
Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard 被引量:5
9
作者 阳富强 吴超 +1 位作者 崔燕 陆广 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期395-401,共7页
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c... In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature. 展开更多
关键词 apparent activation energy sulfide concentrates spontaneous combustion thermogravimetry (TG) analysis differential scanning calorimetry (DSC)
下载PDF
Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
10
作者 晏玉平 张柳亭 +2 位作者 张丽攀 芦刚 涂志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期467-474,共8页
Atomic simulations are executed to investigate the creep responses of nano-polycrystalline(NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size(GS)... Atomic simulations are executed to investigate the creep responses of nano-polycrystalline(NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size(GS) on creep properties and mechanisms are investigated. Notably, the occurrence of tertiary creep is exclusively observed under conditions where the applied stress exceeds 4.5 GPa and the temperature is higher than 1100 K. This phenomenon can be attributed to the significant acceleration of grain boundary and lattice diffusion, driven by the elevated temperature and stress levels. It is found that the strain rate increases with both temperature and stress increasing. However, an interesting trend is observed in which the strain rate decreases as the grain size increases. The stress and temperature are crucial parameters governing the creep behavior. As these factors intensify, the creep mechanism undergoes a sequential transformation: initially from lattice diffusion under low stress and temperature conditions to a mixed mode combining grain boundaries(GBs) and lattice diffusion at moderate stress and mid temperature levels, and ultimately leading to the failure of power-law controlled creep behavior, inclusive of grain boundary recrystallization under high stress and temperature conditions. This comprehensive analysis provides in more detail an understanding of the intricate creep behavior of nano-polycrystalline niobium and its dependence on various physical parameters. 展开更多
关键词 creep behavior molecular dynamics simulation activation energy stress exponent nano-polycrystalline niobium
下载PDF
Description of martensitic transformation kinetics in Fe-C-X(X = Ni,Cr,Mn,Si) system by a modified model
11
作者 Xiyuan Geng Hongcan Chen +3 位作者 Jingjing Wang Yu Zhang Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1026-1036,共11页
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat... Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision. 展开更多
关键词 Fe-C-X system martensitic transformation kinetics curve semi-empirical model nucleation activation energy
下载PDF
Vermiform Ni@CNT derived from one-pot calcination of Ni-MOF precursor for improving hydrogen storage of MgH_(2)
12
作者 Zi-yin DAI Bing ZHANG +10 位作者 Hideo KIMURA Li-rong XIAO Rong-han LIU Cui NI Chuan-xin HOU Xue-qin SUN Yu-ping ZHANG Xiao-yang YANG Rong-hai YU Wei DU Xiu-bo XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2629-2644,共16页
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg... The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent. 展开更多
关键词 Mg-based hydrogen storage material activation energy Ni-loaded carbon nanotubes catalyst mechanism
下载PDF
Dissolution mechanism and kinetics ofβ(Mg_(17)Al_(12))phases in AZ91 magnesium alloy
13
作者 Sultan Alomairy 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1581-1592,共12页
In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanni... In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanning calorimetry and differential dilatometry.The results indicate that this AZ91 alloy undergoes a phase transformation during aging,a discontinuous precipitation of theβphase(Mg_(17)Al_(12))at 150℃at the grain boundaries and another continuous at 350℃within the grains.The activation energy of the dissolution reaction of theβphase(Mg_(17)Al_(12))under non-isothermal conditions is 116.781 kJ/mol,while it is 129.7383 kJ/mol under isothermal conditions.The Avrami coefficient,n,relevant for the dissolution kinetics of theβphase(Mg_(17)Al_(12))is 1.152 and 1.211 in the non-isothermal and isothermal conditions respectively.The numerical coefficients m and Avrami n are 0.993 and 1.152. 展开更多
关键词 AZ91 KINETICS β(Mg_(17)Al_(12)) activation energy Discontinuous precipitation Continuous precipitation DSC
下载PDF
Influence of thermomechanical treatment on recrystallization and softening resistance of Cu-6.5Fe-0.3Mg alloy
14
作者 Zhen-xia LIU Da-wei YUAN +5 位作者 Xin LUO Lan-hao WANG Jin-shui CHEN Hui-ming CHEN Xiang-peng XIAO Bin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2900-2917,共18页
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn... The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2. 展开更多
关键词 Cu−6.5Fe−0.3Mg alloy hot rolling recrystallization activation energy softening mechanism dislocation strengthening
下载PDF
Comparative study on the hydrogen storage performance of as-milled MgRENi rapid quenched alloy catalyzed by metal sulfides
15
作者 Xiaoping Dong Zhaoqing Zhang +3 位作者 Liying Yang Shenghai Xin Dandan Su Zhiyuan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2010-2023,共14页
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy... The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide. 展开更多
关键词 Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy COS CoS_(2)and MoS_(2)sulfide MILLING activation energy Hydrogen storage dynamics
下载PDF
Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process 被引量:16
16
作者 Lei LIU Yun-xin WU +1 位作者 Hai GONG Kai WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期448-459,共12页
To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t... To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate. 展开更多
关键词 2219 Al alloy warm deformation flow behavior constitutive model activation energy
下载PDF
Effect of REs(Y,Nd)addition on high temperature oxidation kinetics,oxide layer characteristic and activation energy of AZ80 alloy 被引量:4
17
作者 Chunlong Cheng Xiaoqiang Li +3 位作者 Qichi Le Ruizhen Guo Qing Lan Jianzhong Cui 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1281-1295,共15页
The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscop... The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively. 展开更多
关键词 MAGNESIUM RARE-EARTH Oxidation kinetics activation energy
下载PDF
Calculation of Apparent Activation Energy of Coal Oxidation at Low Temperatures by Measuring CO Yield 被引量:7
18
作者 QI Feng LI Zeng-hua PAN Shang-kun ZHANG Lin 《Journal of China University of Mining and Technology》 EI 2006年第1期37-41,共5页
By analyzing previous studies on activation energy of coal oxidation at low temperatures, a theoretical calculation model of apparent activation energy is established. Yield of CO is measured by using the characterist... By analyzing previous studies on activation energy of coal oxidation at low temperatures, a theoretical calculation model of apparent activation energy is established. Yield of CO is measured by using the characteristic detector of coal oxidation at 30-90 ℃. The impact of parameters, such as airflow and particle size, on activation energies is analyzed. Finally, agreement was obtained between activation energies and the dynamic oxygen absorbed in order to test the accuracy of the model. The results show that: 1) a positive exponential relation between concentration of CO and temperature in the process of the experiment is obtained: increases are almost identical and the initial CO is low; 2) the apparent activation energies increase gradually with the sizes of particle at the same airflow, but the gradients increase at a decreasing rate; 3) the apparent activation energies increase linearly with airflow. For the five coal particles, the differences among the energies are relatively high when the airflow was low, but the differences were low when the airflow was high; 4) the optimum sizes of particle, 0.125-0.25 ram, and the optimum volume of airflow, 100 mL/min, are determined from the model; 5) the apparent activation energies decrease with an increase in oxygen absorbed. A negative exponential relation between the two is obtained, 展开更多
关键词 coal oxidation at low temperature apparent activation energy particle size AIRFLOW
下载PDF
Magneto-hydrodynamic flow of squeezed fluid with binary chemical reaction and activation energy 被引量:2
19
作者 S.AHMAD M.FAROOQ +2 位作者 N.A.MIR Aisha ANJUM M.JAVED 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1362-1373,共12页
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend... The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed. 展开更多
关键词 squeezing flow magneto-hydrodynamics (MHD) activation energy binary chemical reaction
下载PDF
Determination of the Apparent Activation Energy of Concrete Carbonation 被引量:2
20
作者 李果 YUAN Yingshu +1 位作者 DU Jianmin JI Yongsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期944-949,共6页
Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate conditi... Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃. 展开更多
关键词 CONCRETE carbonation rate apparent activation energy TEMPERATURE
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部