Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based ac...Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600℃ occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of A1203 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.展开更多
The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. T...The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.展开更多
The buffer layer material itself may be influential to the bond strength between active brazing filler and ceramics.For Ag_(57)Cu_(38)Ti_5 filler metal,Cu or Ta is excellent buffer layer material, but Kovar or Ni-15Cr...The buffer layer material itself may be influential to the bond strength between active brazing filler and ceramics.For Ag_(57)Cu_(38)Ti_5 filler metal,Cu or Ta is excellent buffer layer material, but Kovar or Ni-15Cr-15Co is worse.It was important to design a layer of soft buffer,such as Cu,to relax interfacial stress rather than hard buffer layer,such as Mo,to avoid stress. There is an optimum thickness range of soft buffer layer,saying h/L=0.02—0.1. It was a good solution to the interfacial stress problem to use soft/hard buffer layer to increase metal/ceramics joint strength.Finally,an idea of designing gradual materials as buffer layer between metal and ceramics was suggested.展开更多
Bonding ofAl_2O_3 to Cu is performed directly using Ti foil at temperature of 1273K. The microstructure of the joint interface is investigated through scanning electron microscope ( SEM), electron probe microanalysis ...Bonding ofAl_2O_3 to Cu is performed directly using Ti foil at temperature of 1273K. The microstructure of the joint interface is investigated through scanning electron microscope ( SEM), electron probe microanalysis ( EPMA) and X-ray diffraction (XRD). The effect of the initial Ti foil thickness on the reaction layer thickness and the joint strength are investigated.展开更多
Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were in...Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, transmission electron microscopy and shear testing. Results indicate that TiCu and Ti(Cu,Al) decrease, but Ti2Cu and -Ti2(Cu,Al) increase in brazing seam with increasing brazing temperature, holding time and additive Ti content. Area consisting of Ti3(Cu,Al)30 and TiO near Al2O3 becomes gradually discontinuous from continuity when brazing temperature rises or holding time extends. As Ti additive content increases, TiO is absent near Al2O3, area consisting of only Ti3(Cu,Al)30 thickens. TiB whiskers are in situ synthesized by Ti and B atoms during brazing process. The brazing temperature, holding time and additive Ti content on joints microstructure influence the joints shear strength directly. The shear strength of joints, obtained at 850 ℃ holding for 10 min, reaches the maximum of 78 MPa. According to the experimental results, phase diagram and thermodynamics calculation, the interface evolution mechanism of the Al2O3/Ti-6Al-4V alloy joint was analyzed.展开更多
文摘Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600℃ occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of A1203 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0305700)
文摘The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.
文摘The buffer layer material itself may be influential to the bond strength between active brazing filler and ceramics.For Ag_(57)Cu_(38)Ti_5 filler metal,Cu or Ta is excellent buffer layer material, but Kovar or Ni-15Cr-15Co is worse.It was important to design a layer of soft buffer,such as Cu,to relax interfacial stress rather than hard buffer layer,such as Mo,to avoid stress. There is an optimum thickness range of soft buffer layer,saying h/L=0.02—0.1. It was a good solution to the interfacial stress problem to use soft/hard buffer layer to increase metal/ceramics joint strength.Finally,an idea of designing gradual materials as buffer layer between metal and ceramics was suggested.
文摘Bonding ofAl_2O_3 to Cu is performed directly using Ti foil at temperature of 1273K. The microstructure of the joint interface is investigated through scanning electron microscope ( SEM), electron probe microanalysis ( EPMA) and X-ray diffraction (XRD). The effect of the initial Ti foil thickness on the reaction layer thickness and the joint strength are investigated.
基金the National Natural Science Foundation of China (Grant Nos.51275135,51105107 and 51021002)the Natural Science Foundation of Heilongjiang Province,China (Grant No.QC2011C044)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20112302130005)
文摘Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, transmission electron microscopy and shear testing. Results indicate that TiCu and Ti(Cu,Al) decrease, but Ti2Cu and -Ti2(Cu,Al) increase in brazing seam with increasing brazing temperature, holding time and additive Ti content. Area consisting of Ti3(Cu,Al)30 and TiO near Al2O3 becomes gradually discontinuous from continuity when brazing temperature rises or holding time extends. As Ti additive content increases, TiO is absent near Al2O3, area consisting of only Ti3(Cu,Al)30 thickens. TiB whiskers are in situ synthesized by Ti and B atoms during brazing process. The brazing temperature, holding time and additive Ti content on joints microstructure influence the joints shear strength directly. The shear strength of joints, obtained at 850 ℃ holding for 10 min, reaches the maximum of 78 MPa. According to the experimental results, phase diagram and thermodynamics calculation, the interface evolution mechanism of the Al2O3/Ti-6Al-4V alloy joint was analyzed.