Active faults in Quaternary unconsolidated sediments are important indicators to determine paleoearthquake events. They can be studied by macroscopic geological survey, but some problems have been encountered, such as...Active faults in Quaternary unconsolidated sediments are important indicators to determine paleoearthquake events. They can be studied by macroscopic geological survey, but some problems have been encountered, such as invisible active faults. The authors found an approach to solve these problems by microstructural observation. Firstly, oriented original-state samples of Quaternary unconsolidated sediments in active fault zones are collected. Secondly, the samples are consolidated in laboratory. Thirdly, microstructural slides are ground in three-dimension coordinate system. Lastly, microstructures are observed in the microscopic field. By this method, the movement properties of active faults can be determined in lack of the support of macroscopic data. The invisible faults in Quaternary unconsolidated sediments can be found and described. The mechanisms of die-out faults can be also studied. Moreover, the boundaries between different unconsolidated sediments in engineering sites can be studied to judge whether they are active faults or not.展开更多
On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao b...On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao buried fault since the Quaternary and the age of its latest activity phase and determined that the upper break point by the fault dislocation reaches 20 m below the surface. The latest activity phase was in the early Holocene and the fault is a shallow-buried active fault. An average dislocation rate along the fault is 0.12 nun/a since the Quaternary. Thus, it is a buried active fault with intermediate to strong movement strength in the eastern China.展开更多
Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the ...Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the Ganzi-Yushu fault zone(GYF).According to faulted landform as well as deformation and displacement of young deposit layers,the slip rates of GYF since the late Quaternary are briefly studied,combined with the results of geological chronology(14C and Thermoluminescene dating).The result shows that the average slip rates of GYF is differentiate along different segments:Ganzi segment:horizontal rate is 3.4±0.3 mm/a,vertical rate is 2.2±0.1 mm/a;Manigange segment:horizontal rate is 7.0±0.7 mm/a;Denke segment:horizontal rate is 7.2±1.2 mm/a;Dangjiang segment:horizontal rate is 7.3±0.6 mm/a.展开更多
The Holocene alluvial fans and flood plains formed by the Sho and Oyabe Rivers spread out in the Tonami plain from the central through the northern parts in the Toyama Prefecture, central Japan. Along the foot of the ...The Holocene alluvial fans and flood plains formed by the Sho and Oyabe Rivers spread out in the Tonami plain from the central through the northern parts in the Toyama Prefecture, central Japan. Along the foot of the surrounding mountains and hills, higher, middle and lower terraces of late Pleistocene-Holocene in age are distributed. These terraces have been displaced, by the reverse dip-slip activities of Tonami-heiya fault zone in a sense of upheaval in the mountains side, even during the Holocene time. We examined stratigraphic cross section utilizing borehole data and geomorphologically analyzed 5 m-DEM data in order to elucidate the fault trace of the Isurugi fault which Tonami-heiya fault zone. As the results, the northern segment of Isurugi fault seems to run along the northeastern foot of Hodatsu Hills and extends underground through the lower-most Oyabe River into the Toyama Bay. Consequently, its total length reaches about 30 km. In the southern segment, a continuous fault scarplet was recognized to cut across the lower dissected fans. The slip-rate of Isurugi fault is estimated to be 0.31 - 0.64 m/kyr. In the Hokuriku region, reverse faulting and related folding with strike in a NE-SW direction have occurred during the late Quaternary. The hinge line of block movement due to the activities of the Tonami-heiya fault zone is revealed to have shifted from the mountain side into the plain side within the Holocene time. In conclusion, the Quaternary folding and faulting associated with the crustal warping at a wavelength of about 20 km is currently in progress, causing both the subsidence of Tonami plain and the upheaval of surrounding mountains and hills.展开更多
By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are disc...By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are discussed in different time intervals and fault segments.The results suggest that the intensity of activity along the fault zone is not strong,but the differences between different time intervals and fault segments since the late Pleistocene have been obvious.The average rates range from 0.23 mm/a to 1.62 mm/a.The largest average rate is 1.40 mm/a,which occurred in the early and middle of late Pleistocene along the western segment of the fault zone.Since the late stage of the late Pleistocene,the center of faulting activity of the fault zone has shifted to the middle segment,and the average slip rates range have changed from 1.30 mm/a to 1.63 mm/a.展开更多
The Tancheng-Lujiang fault zone has great influence in eastern China. Studies have shown obvious signs of neotectonic activities on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone. In this study,on the basis...The Tancheng-Lujiang fault zone has great influence in eastern China. Studies have shown obvious signs of neotectonic activities on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone. In this study,on the basis of the previous work,many seismological surveys are made along the Tancheng-Lujiang fault zone and trenches are excavated in key sites.Combined with the analysis of the seismic activities along the fault,the fault movement features and future seismic risk are discussed. Much first-hand information obtained in the paper can provide an important reference value for the study of large earthquake recurrence rules and the mid and long-term earthquake prediction on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone.展开更多
Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation...Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.展开更多
Seismic rupture produced by active faulting causes ground surface fracturing and seriously damages buildings.However,the fracture traces are usually indistinct or non-visible because of complicated deformations in Qua...Seismic rupture produced by active faulting causes ground surface fracturing and seriously damages buildings.However,the fracture traces are usually indistinct or non-visible because of complicated deformations in Quaternary unconsolidated materials,so their upper parts can hardly be discovered on exploratory trenches.The aim of this paper is to study the types of fault rupture and displacement in different loose deposit beds from a joint view of mega-,meso-,and microscopic scales,and to find the mark and method for timing the palaeoseismic rupture on exploratory trenches.展开更多
The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of te...The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of tee data obtained from field investigation,the activity features inLate Quaternary have been discussed.The vertical displacement and its slip rate have been alsoestimated.The fault is 48km in length,being divided into 3 segments according to geologicaland topographical characteristics.The last rupture along its northern and middle segments wasoccurred in late of Late Pleistocene or early Holocene while that along the southern segmentwas occurred in midle Holocene.The vertical slip rate is estimated as 0.23~025mm/a sinceabout 66ka B.P.based on the vertical displacements of terracesⅠ,Ⅱ and Ⅲ and their ages.展开更多
Based on detailed field investigations, this paper describes the geometrical characteristics and tectonic activities of the Zhangjiakou fault at the northwest of Beijing. This fault strikes mainly northwest to west, s...Based on detailed field investigations, this paper describes the geometrical characteristics and tectonic activities of the Zhangjiakou fault at the northwest of Beijing. This fault strikes mainly northwest to west, short parts of which strike near east to west, dipping north, and extends over a length of 70km. It is a major geological and geomorphologicai margin, controlling the neotectonic movement in this region. On the south side of the Zhangjiakou fault are the Late Quaternary unconsolidated deposits, forming basins; while on the other side are Mesozoic volcano debris and Pre-Mesozoic metamorphic rocks, forming lower mountains and hills. The Zhangjiakou fault consists mainly of high-angle inverse strike-slip fault and partially of normal strike-slip fault. Among these, the north-dipping NW-NWW-trending secondary faults, constituting the main fracture of the fault, have inverse characteristics; those near the EW-trending secondary faults are links of the former faults, with a smaller length and normal faulting characteristics. Thus, the Zhangjiakou fault is a north-dipping inverse and partially south-dipping normal strike-slip fault. The Zhangjiakou fault has been continuously active since the Quaternary. With the exception of the western end extension, which has been active since the late Pleistocene, the main part of the fault has been active since the Holocene. The central main segment of the Zhangjiakou fault is more active. Since the mid-late period of the late Pleistocene, the average vertical slip rate of a single fault has been over 0. 07mm/a - 0. 30mm/a. The Zhangjiakou fault has multi-slip surfaces, and the total vertical slip rate reaches 1.33mm/a, estimated from the Qingshuihe river terraces and the relevant drilling data.展开更多
It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It ...It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It can not only reveal the pattern of active faults and active tectonics on a macroscop- ic scale, but also monitor the occurrence, development and rules of temporal-spatial evolution of active faults. In this paper, we use the Hangzhou area as an example to introduce methods of extracting de- tailed active fault information when covered by thick unconsolidated Quaternary sediment, using im- age enhancement and image fusion etc. to improve the definition and precision of satellite images and presenting a three-dimensional (3D) image to illustrate tectono-geomorphic features along the relevant faults. We have also collected aeromagnetic anomaly data, shallow seismic exploration data and dating data, and carried out field surveys to validate the characteristics of active faults based on remote sens- ing images. The results revealed about the faults showed a high consistency with traditional geological knowledge, and demonstrate that it is feasible to explore active faults in a weakly active tectonic area by using satellite remote sensing techniques and contribute to large engineering projects and research on neotectonics.展开更多
Since the recorded historical period,the Kachchh Rift Basin(KRB)has encountered numerous moderate to large magnitude earthquakes.According to the series of seismicity research so far,there are several important points...Since the recorded historical period,the Kachchh Rift Basin(KRB)has encountered numerous moderate to large magnitude earthquakes.According to the series of seismicity research so far,there are several important points of debate regarding the tectonic history and evolution of the KRB,especially during the Quaternary period.Therefore,the main objective of the present research is to inspect and perceive the association amongst the strain build-up,earthquake provenance,landform evolution and progression as archived by the Quaternary deposits of the KRB.The previous studies demonstrated the evolutions of various landforms,such as the uplifted fluvial terraces,formation of the gorges,uplifted alluvial fan sequences,which can be ideally used to reconstruct the neotectonic history along active faults of KRB.Considering this,the analysis of the accessible and supportive data,including geochronology provided by earlier studies along with some new dataset for a superior knowledge on the Quaternary tectonic forces prevailing in the KRB,have been carried out.Furthermore,we also emphasized the differences and directions for future potential research issues.The observations of variability in uplift rates across the various active faults in the KRB suggest a complex geological history during the Quaternary period.The results show that the vertical uplift rate along the significant active faults range from 0.8 to 2.8 mm/yr,demonstrating the variable tectonic stress regime prevailing in the KRB.The uplift rates constricted from geomorphic and chronological aspects suggest that the tectonic movements within the Kachchh intraplate region is regulated by the fault segments and the present tectonic stress field is in accordance with the encompassing tectonic stress field associated with the northward movement of the Indian plate corresponding to the Eurasian plate.展开更多
Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,...Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.展开更多
The Toupo Fault, located in southern Anhui Province, strikes N60°~70°E in a linear route that is clear on satellitic image. It plays an important role in controlling the tectonics, geomorphology and distrib...The Toupo Fault, located in southern Anhui Province, strikes N60°~70°E in a linear route that is clear on satellitic image. It plays an important role in controlling the tectonics, geomorphology and distribution of Mesozoic-Cenozoic basins and strata. Detailed field investigation was carried out along the Toupo Fault to study its activity. Profiles, as well as a trench excavated reveal that the Quaternary super stratum above the fault had not been offset. The stratum was sampled and dated with TL methods to be the Mid-Pleistocene time, implying that the fault had been no longer active since then. Three stages can be divided since the fault was formed. The first stage is in the late Yanshan Movement, when the fault movement was of reversal strike-slipping and the tracks formed then are still clear today. The second stage is in the early Himalayan Movement—the late Cretaceous-early Tertiary, when the fault movement turned to be normal faulting and the southern wall became a tensile basin and received clastic sediment. The third stage is since the late Tertiary, when the tectonic movement was very weak. No late Tertiary sediments were formed and the Quaternary sediment was only as thick as ten meters. The geomorphology also suggested an aging form. Neither vertical nor horizontal displacement was evident along the Toupo Fault during this stage, though fault gouge dating suggested that the Toupo Fault might have been active during the Mid-Pleistocene.展开更多
The Changjiang fault zone,also known as the Mufushan-Jiaoshan fault,is a famous fault located at the southern bank of the Changjiang River,near the Nanjing downtown area.Based on multidisciplinary data from shallow ar...The Changjiang fault zone,also known as the Mufushan-Jiaoshan fault,is a famous fault located at the southern bank of the Changjiang River,near the Nanjing downtown area.Based on multidisciplinary data from shallow artificial seismic explorations in the target detecting area(Nanjing city and the nearby areas),trenching and drilling explorations,classification of Quaternary strata and chronology dating data,this paper provides the most up-to-date results regarding activities of the Changjiang fault zone,including the most recent active time,activity nature,related active parameters,and their relation to seismic activity.展开更多
文摘Active faults in Quaternary unconsolidated sediments are important indicators to determine paleoearthquake events. They can be studied by macroscopic geological survey, but some problems have been encountered, such as invisible active faults. The authors found an approach to solve these problems by microstructural observation. Firstly, oriented original-state samples of Quaternary unconsolidated sediments in active fault zones are collected. Secondly, the samples are consolidated in laboratory. Thirdly, microstructural slides are ground in three-dimension coordinate system. Lastly, microstructures are observed in the microscopic field. By this method, the movement properties of active faults can be determined in lack of the support of macroscopic data. The invisible faults in Quaternary unconsolidated sediments can be found and described. The mechanisms of die-out faults can be also studied. Moreover, the boundaries between different unconsolidated sediments in engineering sites can be studied to judge whether they are active faults or not.
文摘On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao buried fault since the Quaternary and the age of its latest activity phase and determined that the upper break point by the fault dislocation reaches 20 m below the surface. The latest activity phase was in the early Holocene and the fault is a shallow-buried active fault. An average dislocation rate along the fault is 0.12 nun/a since the Quaternary. Thus, it is a buried active fault with intermediate to strong movement strength in the eastern China.
文摘Based on regional geological mapping results and interpretation of satellites images and areophotos in combination with detailed field study,this paper gives the spatial distribution of recent surface activity of the Ganzi-Yushu fault zone(GYF).According to faulted landform as well as deformation and displacement of young deposit layers,the slip rates of GYF since the late Quaternary are briefly studied,combined with the results of geological chronology(14C and Thermoluminescene dating).The result shows that the average slip rates of GYF is differentiate along different segments:Ganzi segment:horizontal rate is 3.4±0.3 mm/a,vertical rate is 2.2±0.1 mm/a;Manigange segment:horizontal rate is 7.0±0.7 mm/a;Denke segment:horizontal rate is 7.2±1.2 mm/a;Dangjiang segment:horizontal rate is 7.3±0.6 mm/a.
文摘The Holocene alluvial fans and flood plains formed by the Sho and Oyabe Rivers spread out in the Tonami plain from the central through the northern parts in the Toyama Prefecture, central Japan. Along the foot of the surrounding mountains and hills, higher, middle and lower terraces of late Pleistocene-Holocene in age are distributed. These terraces have been displaced, by the reverse dip-slip activities of Tonami-heiya fault zone in a sense of upheaval in the mountains side, even during the Holocene time. We examined stratigraphic cross section utilizing borehole data and geomorphologically analyzed 5 m-DEM data in order to elucidate the fault trace of the Isurugi fault which Tonami-heiya fault zone. As the results, the northern segment of Isurugi fault seems to run along the northeastern foot of Hodatsu Hills and extends underground through the lower-most Oyabe River into the Toyama Bay. Consequently, its total length reaches about 30 km. In the southern segment, a continuous fault scarplet was recognized to cut across the lower dissected fans. The slip-rate of Isurugi fault is estimated to be 0.31 - 0.64 m/kyr. In the Hokuriku region, reverse faulting and related folding with strike in a NE-SW direction have occurred during the late Quaternary. The hinge line of block movement due to the activities of the Tonami-heiya fault zone is revealed to have shifted from the mountain side into the plain side within the Holocene time. In conclusion, the Quaternary folding and faulting associated with the crustal warping at a wavelength of about 20 km is currently in progress, causing both the subsidence of Tonami plain and the upheaval of surrounding mountains and hills.
基金This project was sponsored by the State Seismological Bureau (85-02-3-3), China
文摘By computing and classifying the data of gully offset obtained from field surveys along the Tianjingshan fault zone and estimating the ages of three types of gullies,the strike-slip rates along the fault zone are discussed in different time intervals and fault segments.The results suggest that the intensity of activity along the fault zone is not strong,but the differences between different time intervals and fault segments since the late Pleistocene have been obvious.The average rates range from 0.23 mm/a to 1.62 mm/a.The largest average rate is 1.40 mm/a,which occurred in the early and middle of late Pleistocene along the western segment of the fault zone.Since the late stage of the late Pleistocene,the center of faulting activity of the fault zone has shifted to the middle segment,and the average slip rates range have changed from 1.30 mm/a to 1.63 mm/a.
基金jointly sponsored by the Special Fund for Earthquake-related Scientific Research of China Earthquake Administration(201308012)the Anhui Provincial Natural Science Foundation(10040606Q24),China
文摘The Tancheng-Lujiang fault zone has great influence in eastern China. Studies have shown obvious signs of neotectonic activities on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone. In this study,on the basis of the previous work,many seismological surveys are made along the Tancheng-Lujiang fault zone and trenches are excavated in key sites.Combined with the analysis of the seismic activities along the fault,the fault movement features and future seismic risk are discussed. Much first-hand information obtained in the paper can provide an important reference value for the study of large earthquake recurrence rules and the mid and long-term earthquake prediction on the Xinyi-Wuhe segment of the Tancheng-Lujiang fault zone.
基金jointly funded by the Anhui provincial geological public-welfare project“New Activities of Quaternary and Medium Velocity Structure Exploration and Evaluation for Key Sections of the Tan-Lu Fault Zone(the Anhui segment)”(2015-g-25)the project of“3-D Seismic Section Model and Earthquake Prediction Research in the Tanlu Fault Zone”,China Earthquake Administration(TYZ20160101)
文摘Taking the Huaihe to the Nvshanhu segment of the Tanlu( Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary,and based on the interpretation of remote sensing images and repeated surface investigations,we excavated trenches at the sections where the tectonic landform is significant,identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples ' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault,three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip,as represented typically by fault scarps,wedge accumulation,the faults and the filled cracks and so on. In general,it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition,the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.
基金This project was sponsored by the Joint Earthquake Science Foundation under Contract No. 197007by the Doctoral Program Foundation of Institution of Higher Education, State Education Commission of China
文摘Seismic rupture produced by active faulting causes ground surface fracturing and seriously damages buildings.However,the fracture traces are usually indistinct or non-visible because of complicated deformations in Quaternary unconsolidated materials,so their upper parts can hardly be discovered on exploratory trenches.The aim of this paper is to study the types of fault rupture and displacement in different loose deposit beds from a joint view of mega-,meso-,and microscopic scales,and to find the mark and method for timing the palaeoseismic rupture on exploratory trenches.
基金This project was sponsored by the Joint Earthquake Seience Foundation (197013) and the Commission of Science and Technology, Ningxia Hui Autonomous Region, China.
文摘The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of tee data obtained from field investigation,the activity features inLate Quaternary have been discussed.The vertical displacement and its slip rate have been alsoestimated.The fault is 48km in length,being divided into 3 segments according to geologicaland topographical characteristics.The last rupture along its northern and middle segments wasoccurred in late of Late Pleistocene or early Holocene while that along the southern segmentwas occurred in midle Holocene.The vertical slip rate is estimated as 0.23~025mm/a sinceabout 66ka B.P.based on the vertical displacements of terracesⅠ,Ⅱ and Ⅲ and their ages.
基金sponsored by the Active Fault Exploration and Earthquake Risk Evaluation Program of City (Grant No. 684[2007],Hebei Provence,China)the Special Earthquake Scientific Research Program,China
文摘Based on detailed field investigations, this paper describes the geometrical characteristics and tectonic activities of the Zhangjiakou fault at the northwest of Beijing. This fault strikes mainly northwest to west, short parts of which strike near east to west, dipping north, and extends over a length of 70km. It is a major geological and geomorphologicai margin, controlling the neotectonic movement in this region. On the south side of the Zhangjiakou fault are the Late Quaternary unconsolidated deposits, forming basins; while on the other side are Mesozoic volcano debris and Pre-Mesozoic metamorphic rocks, forming lower mountains and hills. The Zhangjiakou fault consists mainly of high-angle inverse strike-slip fault and partially of normal strike-slip fault. Among these, the north-dipping NW-NWW-trending secondary faults, constituting the main fracture of the fault, have inverse characteristics; those near the EW-trending secondary faults are links of the former faults, with a smaller length and normal faulting characteristics. Thus, the Zhangjiakou fault is a north-dipping inverse and partially south-dipping normal strike-slip fault. The Zhangjiakou fault has been continuously active since the Quaternary. With the exception of the western end extension, which has been active since the late Pleistocene, the main part of the fault has been active since the Holocene. The central main segment of the Zhangjiakou fault is more active. Since the mid-late period of the late Pleistocene, the average vertical slip rate of a single fault has been over 0. 07mm/a - 0. 30mm/a. The Zhangjiakou fault has multi-slip surfaces, and the total vertical slip rate reaches 1.33mm/a, estimated from the Qingshuihe river terraces and the relevant drilling data.
基金supported by the Major Research Project of the Ministry of Land and Resources,China(No.1212011120887)
文摘It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It can not only reveal the pattern of active faults and active tectonics on a macroscop- ic scale, but also monitor the occurrence, development and rules of temporal-spatial evolution of active faults. In this paper, we use the Hangzhou area as an example to introduce methods of extracting de- tailed active fault information when covered by thick unconsolidated Quaternary sediment, using im- age enhancement and image fusion etc. to improve the definition and precision of satellite images and presenting a three-dimensional (3D) image to illustrate tectono-geomorphic features along the relevant faults. We have also collected aeromagnetic anomaly data, shallow seismic exploration data and dating data, and carried out field surveys to validate the characteristics of active faults based on remote sens- ing images. The results revealed about the faults showed a high consistency with traditional geological knowledge, and demonstrate that it is feasible to explore active faults in a weakly active tectonic area by using satellite remote sensing techniques and contribute to large engineering projects and research on neotectonics.
基金Ministry of Earth Science(MoES),Govt.of India for financial support((MoES/P.O.(Seismo)/1(270)/AFM/2015))under the Active Fault Mapping program。
文摘Since the recorded historical period,the Kachchh Rift Basin(KRB)has encountered numerous moderate to large magnitude earthquakes.According to the series of seismicity research so far,there are several important points of debate regarding the tectonic history and evolution of the KRB,especially during the Quaternary period.Therefore,the main objective of the present research is to inspect and perceive the association amongst the strain build-up,earthquake provenance,landform evolution and progression as archived by the Quaternary deposits of the KRB.The previous studies demonstrated the evolutions of various landforms,such as the uplifted fluvial terraces,formation of the gorges,uplifted alluvial fan sequences,which can be ideally used to reconstruct the neotectonic history along active faults of KRB.Considering this,the analysis of the accessible and supportive data,including geochronology provided by earlier studies along with some new dataset for a superior knowledge on the Quaternary tectonic forces prevailing in the KRB,have been carried out.Furthermore,we also emphasized the differences and directions for future potential research issues.The observations of variability in uplift rates across the various active faults in the KRB suggest a complex geological history during the Quaternary period.The results show that the vertical uplift rate along the significant active faults range from 0.8 to 2.8 mm/yr,demonstrating the variable tectonic stress regime prevailing in the KRB.The uplift rates constricted from geomorphic and chronological aspects suggest that the tectonic movements within the Kachchh intraplate region is regulated by the fault segments and the present tectonic stress field is in accordance with the encompassing tectonic stress field associated with the northward movement of the Indian plate corresponding to the Eurasian plate.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No. 2012BAK15B01-03)the National Science & Technology Major Project (Grant No. 2011ZX06002-010-15)
文摘Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.
文摘The Toupo Fault, located in southern Anhui Province, strikes N60°~70°E in a linear route that is clear on satellitic image. It plays an important role in controlling the tectonics, geomorphology and distribution of Mesozoic-Cenozoic basins and strata. Detailed field investigation was carried out along the Toupo Fault to study its activity. Profiles, as well as a trench excavated reveal that the Quaternary super stratum above the fault had not been offset. The stratum was sampled and dated with TL methods to be the Mid-Pleistocene time, implying that the fault had been no longer active since then. Three stages can be divided since the fault was formed. The first stage is in the late Yanshan Movement, when the fault movement was of reversal strike-slipping and the tracks formed then are still clear today. The second stage is in the early Himalayan Movement—the late Cretaceous-early Tertiary, when the fault movement turned to be normal faulting and the southern wall became a tensile basin and received clastic sediment. The third stage is since the late Tertiary, when the tectonic movement was very weak. No late Tertiary sediments were formed and the Quaternary sediment was only as thick as ten meters. The geomorphology also suggested an aging form. Neither vertical nor horizontal displacement was evident along the Toupo Fault during this stage, though fault gouge dating suggested that the Toupo Fault might have been active during the Mid-Pleistocene.
基金sponsored by the Key Construction Programof the National Tenth"Five-year Plan"the Sub-project forthe Earthquake Active Fault Detecting Technology System(1-4-10)the Active Fault Detecting and Earthquake Risk Evaluation of Nanjing City
文摘The Changjiang fault zone,also known as the Mufushan-Jiaoshan fault,is a famous fault located at the southern bank of the Changjiang River,near the Nanjing downtown area.Based on multidisciplinary data from shallow artificial seismic explorations in the target detecting area(Nanjing city and the nearby areas),trenching and drilling explorations,classification of Quaternary strata and chronology dating data,this paper provides the most up-to-date results regarding activities of the Changjiang fault zone,including the most recent active time,activity nature,related active parameters,and their relation to seismic activity.