Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing ...Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing an antiaromatic reactant.However,both aromaticity and transition states cannot be directly measured in experiment.Thus,computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.In this review,we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity.Specifically,we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation,Csingle bondF bond activation,rearrangement,as well as metathesis reactions.In addition,antiaromaticity-promoted dihydrogen activation,CO_(2)capture,and oxygen reduction reactions will be also briefly discussed.Finally,caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases.Thus,a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states.展开更多
The study of small-molecule activation by f-block elements still lags far behind that of transition metals.Although a few uranium complexes have been reported to activate dinitrogen,reports on the activation of heavie...The study of small-molecule activation by f-block elements still lags far behind that of transition metals.Although a few uranium complexes have been reported to activate dinitrogen,reports on the activation of heavier congeners,such as white phosphorus(P_(4)),by uranium species are extremely rare,and no example of uranium-mediated activation of elemental arsenic has appeared.展开更多
基金the National Natural Science Foundation of China(22073079,22025105 and 21873079)the Ministry of Education of China(H20200504)+2 种基金the Top-Notch Young Talents Program of China is gratefully acknowledgedM.S.thanks the Ministerio de Ciencia e Innovación of Spain(project PID2020-113711GB-I00)the Generalitat de Catalunya(project 2017SGR39).
文摘Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing an antiaromatic reactant.However,both aromaticity and transition states cannot be directly measured in experiment.Thus,computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.In this review,we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity.Specifically,we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation,Csingle bondF bond activation,rearrangement,as well as metathesis reactions.In addition,antiaromaticity-promoted dihydrogen activation,CO_(2)capture,and oxygen reduction reactions will be also briefly discussed.Finally,caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases.Thus,a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states.
基金supported by the National Natural Science Foundation of China(grant nos.21772088 and 91961116)the Fundamental Research Funds for the Central Universities(nos.14380216 and 14380262)Programs for high-level entrepreneurial and innovative talents introduction of Jiangsu Province(individual and group programs).L.M.is a senior member of the Institut Universitaire de France.The Humboldt Foundation and Chinese Academy of Science are acknowledged for financial support。
文摘The study of small-molecule activation by f-block elements still lags far behind that of transition metals.Although a few uranium complexes have been reported to activate dinitrogen,reports on the activation of heavier congeners,such as white phosphorus(P_(4)),by uranium species are extremely rare,and no example of uranium-mediated activation of elemental arsenic has appeared.