The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic...The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.展开更多
An improved half-vehicle model has been proposed for active suspension control systems, in contrast to existing models, it allows to explore the nature of the effect of vehicle speed changes by introducing a state vec...An improved half-vehicle model has been proposed for active suspension control systems, in contrast to existing models, it allows to explore the nature of the effect of vehicle speed changes by introducing a state vector of vehicle pitch angle. Three control strategies of linear quadratic control (LQ), improved LQ (ILQ) and wheelbase preview LQ (WLQ) have been implemented into the proposed model. ILQ has integrated an additional control parameter into LQ by concerning the correlation between acceleration values and their corresponding pitch angles. Simulation results have showed the effectiveness of the proposed model in terms of LQ, ILQ and WLQ control strategies.展开更多
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f...This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.展开更多
The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or tr...The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.展开更多
针对车辆主动悬架系统的线性二次型调节器(linear quadratic regulator,LQR)在设定权重系数矩阵Q和R时具有主观性、效率低的缺点,提出一种基于蛇算法(snake optimizer,SO)优化LQR控制器权重系数矩阵的策略。通过对1/4车辆主动悬架系统...针对车辆主动悬架系统的线性二次型调节器(linear quadratic regulator,LQR)在设定权重系数矩阵Q和R时具有主观性、效率低的缺点,提出一种基于蛇算法(snake optimizer,SO)优化LQR控制器权重系数矩阵的策略。通过对1/4车辆主动悬架系统的动力学分析,设计了LQR控制器;将主动悬架与被动悬架各性能指标的积分比值进行加权求和构建了目标函数L;模仿蛇群生活习性的SO算法在搜索空间中求解出了函数L的最小值和LQR控制器的最优权重系数矩阵。为验证该策略的有效性,分别以C级路面、正弦冲击路面为激励,对车身加速度(sprung mass acceleration,SMA)、轮胎动载荷(dynamic tyre load,DTL)、悬架动行程(suspension working space,SWS)3个方面将SO优化LQR控制的主动悬架与被动悬架、传统LQR控制的主动悬架、遗传算法优化LQR控制的主动悬架、粒子群算法优化LQR控制的主动悬架进行了仿真对比。结果表明:SO优化LQR控制的主动悬架可在C级路面上分别对SMA、DTL、SWS的均方根优化达59.47%、37.89%、42.12%;在正弦冲击路面上稳定时间为1.4 s,分别对SMA、DTL、SWS的超调优化达79.21%、59.22%、16.33%,提升了车辆的行驶平顺性、路面附着性和操作安全性。展开更多
针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑...针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑到路面不平度与系统状态响应获取存在先后顺序,采用开环带有外部输入的非线性自回归(Nonlinear Auto-regressive Model with Exogenous Inputs,NARX)神经网络预测与逆模型相结合的方法来识别路面不平度。神经网络离线训练在线识别,识别模块实时将结果传输给控制器。在整车模型上对控制策略进行仿真。结果表明,粒子群优化使平顺性指标显著改善;采用的路面识别方法可有效提高识别的精确性;与不识别扰动控制相比,本策略可有效降低悬架动挠度的恶化,并改善整体控制效果。展开更多
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force ...This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.展开更多
文摘The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.
文摘An improved half-vehicle model has been proposed for active suspension control systems, in contrast to existing models, it allows to explore the nature of the effect of vehicle speed changes by introducing a state vector of vehicle pitch angle. Three control strategies of linear quadratic control (LQ), improved LQ (ILQ) and wheelbase preview LQ (WLQ) have been implemented into the proposed model. ILQ has integrated an additional control parameter into LQ by concerning the correlation between acceleration values and their corresponding pitch angles. Simulation results have showed the effectiveness of the proposed model in terms of LQ, ILQ and WLQ control strategies.
基金partially supported by the National Natural Science Foundation of China(61622302,61673072,61573070)Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306014)+1 种基金the Department of Education of Guangdong Province(2016KTSCX030)the Department of Education of Liaoning Province(LZ2017001)
文摘This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.
文摘The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.
文摘针对车辆主动悬架系统的线性二次型调节器(linear quadratic regulator,LQR)在设定权重系数矩阵Q和R时具有主观性、效率低的缺点,提出一种基于蛇算法(snake optimizer,SO)优化LQR控制器权重系数矩阵的策略。通过对1/4车辆主动悬架系统的动力学分析,设计了LQR控制器;将主动悬架与被动悬架各性能指标的积分比值进行加权求和构建了目标函数L;模仿蛇群生活习性的SO算法在搜索空间中求解出了函数L的最小值和LQR控制器的最优权重系数矩阵。为验证该策略的有效性,分别以C级路面、正弦冲击路面为激励,对车身加速度(sprung mass acceleration,SMA)、轮胎动载荷(dynamic tyre load,DTL)、悬架动行程(suspension working space,SWS)3个方面将SO优化LQR控制的主动悬架与被动悬架、传统LQR控制的主动悬架、遗传算法优化LQR控制的主动悬架、粒子群算法优化LQR控制的主动悬架进行了仿真对比。结果表明:SO优化LQR控制的主动悬架可在C级路面上分别对SMA、DTL、SWS的均方根优化达59.47%、37.89%、42.12%;在正弦冲击路面上稳定时间为1.4 s,分别对SMA、DTL、SWS的超调优化达79.21%、59.22%、16.33%,提升了车辆的行驶平顺性、路面附着性和操作安全性。
文摘针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑到路面不平度与系统状态响应获取存在先后顺序,采用开环带有外部输入的非线性自回归(Nonlinear Auto-regressive Model with Exogenous Inputs,NARX)神经网络预测与逆模型相结合的方法来识别路面不平度。神经网络离线训练在线识别,识别模块实时将结果传输给控制器。在整车模型上对控制策略进行仿真。结果表明,粒子群优化使平顺性指标显著改善;采用的路面识别方法可有效提高识别的精确性;与不识别扰动控制相比,本策略可有效降低悬架动挠度的恶化,并改善整体控制效果。
文摘This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.