It has been proven by a number of earthquake case studies that an active fault-induced earthquake beneath a city can be devastating. It is an urgent issue for seismic hazard reduction to explore the distribution of ac...It has been proven by a number of earthquake case studies that an active fault-induced earthquake beneath a city can be devastating. It is an urgent issue for seismic hazard reduction to explore the distribution of active faults beneath the urban area and identify the seismic source and the risks underneath. As a pilot project of active fault exploration in China, the project, entitled “Active fault exploration and seismic hazard assessment in Fuzhou City”, started in early 2001 and passed the check before acceptance of China Earthquake Administration in August 2004. The project was aimed to solve a series of scientific issues such as fault location, dating, movement nature, deep settings, seismic risk and hazard, preparedness of earthquake prevention and disaster reduction, and etc. by means of exploration and assessment of active faults by stages, i.e., the preliminary survey and identification of active faults in target area, the exploration of deep seismotectonic settings, the risk evaluation of active seismogenic faults, the construction of geographic information system of active faults, and so on. A lot of exploration methods were employed in the project such as the detection of absorbed mercury, free mercury and radon in soil, the geological radar, multi-channel DC electrical method, tsansient electromagnetic method, shallow seismic refraction and reflection, effect contrast of explored sources, and various sounding experiments, to establish the buried Quaternary standard section of the Fuzhou basin. By summing up, the above explorations and experiments have achieved the following results and conclusions :展开更多
Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sedime...Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.展开更多
Analyzing the information carriede by seismic waves is a major means for human beings to have an insight into the structure of the earth’s interior,and by using artificial seismic sources to excite seismic waves,we c...Analyzing the information carriede by seismic waves is a major means for human beings to have an insight into the structure of the earth’s interior,and by using artificial seismic sources to excite seismic waves,we can obtain high-resolution images for the crustal and smaller scale medium.Artificial seismic exploration methods have been widely applied to fields such as展开更多
The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the ...The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the Baoding-Shijiazhuang fault and the Xushui fault were active in the late Pleistocene,but the south Xushui fault has been inactive since the late Pleistocene.The maximum magnitude of potential earthquake of the faults is 6.0.展开更多
In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small to...In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.展开更多
Buried faults in Weifang city and surrounding areas are studied with geophysical surveys such as shallow seismic survey and electrical exploration, and verified with engineering drilling. Six main faults are detected ...Buried faults in Weifang city and surrounding areas are studied with geophysical surveys such as shallow seismic survey and electrical exploration, and verified with engineering drilling. Six main faults are detected including the Yishul-Tangtou fault, Tangwu-Gegou fault, Hanting fault and Weixian fault, etc. The latest active age is determined by OSL, TL and ESR dating techniques. No active fault has been found so far in the Weifang urban area. Our results provide a scientific basis for land use and urban planning.展开更多
It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It ...It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It can not only reveal the pattern of active faults and active tectonics on a macroscop- ic scale, but also monitor the occurrence, development and rules of temporal-spatial evolution of active faults. In this paper, we use the Hangzhou area as an example to introduce methods of extracting de- tailed active fault information when covered by thick unconsolidated Quaternary sediment, using im- age enhancement and image fusion etc. to improve the definition and precision of satellite images and presenting a three-dimensional (3D) image to illustrate tectono-geomorphic features along the relevant faults. We have also collected aeromagnetic anomaly data, shallow seismic exploration data and dating data, and carried out field surveys to validate the characteristics of active faults based on remote sens- ing images. The results revealed about the faults showed a high consistency with traditional geological knowledge, and demonstrate that it is feasible to explore active faults in a weakly active tectonic area by using satellite remote sensing techniques and contribute to large engineering projects and research on neotectonics.展开更多
文摘It has been proven by a number of earthquake case studies that an active fault-induced earthquake beneath a city can be devastating. It is an urgent issue for seismic hazard reduction to explore the distribution of active faults beneath the urban area and identify the seismic source and the risks underneath. As a pilot project of active fault exploration in China, the project, entitled “Active fault exploration and seismic hazard assessment in Fuzhou City”, started in early 2001 and passed the check before acceptance of China Earthquake Administration in August 2004. The project was aimed to solve a series of scientific issues such as fault location, dating, movement nature, deep settings, seismic risk and hazard, preparedness of earthquake prevention and disaster reduction, and etc. by means of exploration and assessment of active faults by stages, i.e., the preliminary survey and identification of active faults in target area, the exploration of deep seismotectonic settings, the risk evaluation of active seismogenic faults, the construction of geographic information system of active faults, and so on. A lot of exploration methods were employed in the project such as the detection of absorbed mercury, free mercury and radon in soil, the geological radar, multi-channel DC electrical method, tsansient electromagnetic method, shallow seismic refraction and reflection, effect contrast of explored sources, and various sounding experiments, to establish the buried Quaternary standard section of the Fuzhou basin. By summing up, the above explorations and experiments have achieved the following results and conclusions :
基金The Open Fund of Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources under contract No.KLMMR-2015-B-03the China Ocean Mineral Resources Research and Development Association Project under contract Nos DY125-11-R-01 and DY125-11-R-05the National Basic Research Program(973 program)of China under contract No.2012CB417305
文摘Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.
文摘Analyzing the information carriede by seismic waves is a major means for human beings to have an insight into the structure of the earth’s interior,and by using artificial seismic sources to excite seismic waves,we can obtain high-resolution images for the crustal and smaller scale medium.Artificial seismic exploration methods have been widely applied to fields such as
基金sponsored by Active Faults Seismic Hazard Assessment in Key Earthquake Monitoring and Defensive Region of China
文摘The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the Baoding-Shijiazhuang fault and the Xushui fault were active in the late Pleistocene,but the south Xushui fault has been inactive since the late Pleistocene.The maximum magnitude of potential earthquake of the faults is 6.0.
基金This research was supported by the National Key R&D Program of China(No.2018YFC1503200)the Nuclear Waste Geological Disposal Project([2013]727)+2 种基金the National Natural Science Foundation of China(Grant Nos.41790463 and 41730425)the Spark Program of Earthquake Sciences of CEA(XH18063Y)the Special Fund of GEC of CEA(YFGEC2017003,SFGEC2014006).
文摘In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.
基金Key Projects of Earthquake Prevention and Disasters Mitigationin the 10th "Five-Year Plan" of Shandong Province (SD10503)
文摘Buried faults in Weifang city and surrounding areas are studied with geophysical surveys such as shallow seismic survey and electrical exploration, and verified with engineering drilling. Six main faults are detected including the Yishul-Tangtou fault, Tangwu-Gegou fault, Hanting fault and Weixian fault, etc. The latest active age is determined by OSL, TL and ESR dating techniques. No active fault has been found so far in the Weifang urban area. Our results provide a scientific basis for land use and urban planning.
基金supported by the Major Research Project of the Ministry of Land and Resources,China(No.1212011120887)
文摘It is important to explore active faults in urban areas and their surroundings for earth- quake disaster mitigation. Satellite remote sensing techniques can play an important role in such active fault exploration. It can not only reveal the pattern of active faults and active tectonics on a macroscop- ic scale, but also monitor the occurrence, development and rules of temporal-spatial evolution of active faults. In this paper, we use the Hangzhou area as an example to introduce methods of extracting de- tailed active fault information when covered by thick unconsolidated Quaternary sediment, using im- age enhancement and image fusion etc. to improve the definition and precision of satellite images and presenting a three-dimensional (3D) image to illustrate tectono-geomorphic features along the relevant faults. We have also collected aeromagnetic anomaly data, shallow seismic exploration data and dating data, and carried out field surveys to validate the characteristics of active faults based on remote sens- ing images. The results revealed about the faults showed a high consistency with traditional geological knowledge, and demonstrate that it is feasible to explore active faults in a weakly active tectonic area by using satellite remote sensing techniques and contribute to large engineering projects and research on neotectonics.