期刊文献+
共找到1,491,032篇文章
< 1 2 250 >
每页显示 20 50 100
基于Actor-Critic学习的数控机床加工过程控制方法 被引量:1
1
作者 黄苏 《辽东学院学报(自然科学版)》 CAS 2022年第4期273-278,共6页
为了精准控制数控机床的加工过程,提升数控机床工作效率,研究基于Actor-Critic学习的数控机床加工过程控制方法是很好的解决办法。通过结合模糊推理系统与径向基函数神经网络,设计Actor-Critic学习网络结构;通过增加网络节点完成网络结... 为了精准控制数控机床的加工过程,提升数控机床工作效率,研究基于Actor-Critic学习的数控机床加工过程控制方法是很好的解决办法。通过结合模糊推理系统与径向基函数神经网络,设计Actor-Critic学习网络结构;通过增加网络节点完成网络结构学习,利用梯度下降法完成网络可调参数学习,得到模糊Actor-Critic学习网络;通过数控机床加工过程切削力设定值和实际输出切削力测量值之差,获取PID控制器误差信号;利用状态转换器转换误差信号,获取加工过程状态向量,并输入到模糊Actor-Critic学习网络内,输出PID控制器最优参数,完成数控机床加工过程控制。实验证明:在加工不同材料时,该方法均可有效控制加工过程,且最大偏差较小;在不同切削深度时,该方法的跟踪误差平方与绝对误差积分均较低,具备较优的控制精度与平稳度,从而可有效提升数控机床工作效率。 展开更多
关键词 actor-critic学习 数控机床 加工过程控制 模糊推理 梯度下降法 控制器
下载PDF
基于核方法的连续动作Actor-Critic学习 被引量:8
2
作者 陈兴国 高阳 +1 位作者 范顺国 俞亚君 《模式识别与人工智能》 EI CSCD 北大核心 2014年第2期103-110,共8页
强化学习算法通常要处理连续状态及连续动作空间问题以实现精确控制.就此文中结合Actor-Critic方法在处理连续动作空间的优点及核方法在处理连续状态空间的优势,提出一种基于核方法的连续动作Actor-Critic学习算法(KCACL).该算法中,Acto... 强化学习算法通常要处理连续状态及连续动作空间问题以实现精确控制.就此文中结合Actor-Critic方法在处理连续动作空间的优点及核方法在处理连续状态空间的优势,提出一种基于核方法的连续动作Actor-Critic学习算法(KCACL).该算法中,Actor根据奖赏不作为原则更新动作概率,Critic采用基于核方法的在线选择时间差分算法学习状态值函数.对比实验验证该算法的有效性. 展开更多
关键词 强化学习 连续动作空间 函数估计 核方法
下载PDF
一种自适应模糊Actor-Critic学习 被引量:3
3
作者 王雪松 程玉虎 易建强 《控制与决策》 EI CSCD 北大核心 2006年第9期1068-1072,共5页
提出一种基于模糊RBF网络的自适应模糊A ctor-C ritic学习.采用一个模糊RBF神经网络同时逼近A ctor的动作函数和C ritic的值函数,解决状态空间泛化中易出现的“维数灾”问题.模糊RBF网络能够根据环境状态和被控对象特性的变化进行网络... 提出一种基于模糊RBF网络的自适应模糊A ctor-C ritic学习.采用一个模糊RBF神经网络同时逼近A ctor的动作函数和C ritic的值函数,解决状态空间泛化中易出现的“维数灾”问题.模糊RBF网络能够根据环境状态和被控对象特性的变化进行网络结构和参数的自适应学习,使得网络结构更加紧凑,整个模糊A ctor-C ritic学习具有泛化性能好、控制结构简单和学习效率高的特点.M oun ta in C ar的仿真结果验证了所提方法的有效性. 展开更多
关键词 Actor—Critic学习 模糊推理系统 RBF网络 泛化
下载PDF
滑模控制器参数整定的Actor-Critic学习算法 被引量:4
4
作者 宋仕元 胡剑波 +1 位作者 王应洋 韩霖晓 《电光与控制》 CSCD 北大核心 2020年第9期24-27,49,共5页
针对滑模变结构控制律设计过程中出现的控制参数整定问题,提出一种基于强化学习的滑模变结构控制参数寻优方法。首先,根据系统设计了相应的滑模控制律,并给出了参数选择的范围,设计了基于Actor-Critic结构的参数在线整定器。然后,选择TD... 针对滑模变结构控制律设计过程中出现的控制参数整定问题,提出一种基于强化学习的滑模变结构控制参数寻优方法。首先,根据系统设计了相应的滑模控制律,并给出了参数选择的范围,设计了基于Actor-Critic结构的参数在线整定器。然后,选择TD-Error方法进行求解计算,并用梯度下降法计算出神经网络权值的更新取值。最后,以固定翼飞行器纵向通道系统为例进行了仿真和实验验证,实验结果说明所提出控制方法减小了控制参数整定的盲目性,有效提升了系统的动态性能。 展开更多
关键词 滑模变结构控制 actor-critic 强化学习 参数整定
下载PDF
移动边缘计算中基于Actor-Critic深度强化学习的任务调度方法
5
作者 黄一帆 曾旺 +2 位作者 陈哲毅 于正欣 苗旺 《计算机应用》 CSCD 北大核心 2024年第S01期150-155,共6页
移动边缘计算(MEC)通过将计算与存储资源部署至网络边缘,有效降低了任务响应时间并提高了资源利用率。由于MEC系统状态的动态性和用户需求的多变性,如何进行有效的任务调度面临着巨大的挑战,不合理的任务调度策略将严重影响系统的整体... 移动边缘计算(MEC)通过将计算与存储资源部署至网络边缘,有效降低了任务响应时间并提高了资源利用率。由于MEC系统状态的动态性和用户需求的多变性,如何进行有效的任务调度面临着巨大的挑战,不合理的任务调度策略将严重影响系统的整体性能。现有工作通常对任务采用平均分配资源或基于规则的策略,不能有效地处理动态的MEC环境,这可能造成过多的资源消耗,进而导致服务质量(QoS)下降。针对上述重要问题,提出了一种MEC中基于Actor-Critic深度强化学习的任务调度方法(TSAC)。首先,提出了一种面向边缘环境的任务调度模型并将任务等待时间和任务完成率作为优化目标;其次,基于所提系统模型与深度强化学习框架,将联合优化问题形式化为马尔可夫决策过程;最后,基于近端策略优化方法,设计了一种新型的掩码机制,在避免智能体做出违反系统约束的动作和策略突变的同时提高了TSAC的收敛性能。基于谷歌集群真实运行数据集进行仿真实验,与深度Q网络方法相比,至少降低6%的任务等待时间,同时提高4%的任务完成率,验证了的可行性和有效性。 展开更多
关键词 移动边缘计算 任务调度 深度强化学习 掩码机制 多目标优化
下载PDF
基于Tile Coding编码和模型学习的Actor-Critic算法 被引量:3
6
作者 金玉净 朱文文 +1 位作者 伏玉琛 刘全 《计算机科学》 CSCD 北大核心 2014年第6期239-242,249,共5页
Actor-Critic是一类具有较好性能及收敛保证的强化学习方法,然而,Agent在学习和改进策略的过程中并没有对环境的动态性进行学习,导致Actor-Critic方法的性能受到一定限制。此外,Actor-Critic方法中需要近似地表示策略以及值函数,其中状... Actor-Critic是一类具有较好性能及收敛保证的强化学习方法,然而,Agent在学习和改进策略的过程中并没有对环境的动态性进行学习,导致Actor-Critic方法的性能受到一定限制。此外,Actor-Critic方法中需要近似地表示策略以及值函数,其中状态和动作的编码方法以及参数对Actor-Critic方法有重要的影响。Tile Coding编码具有简单易用、计算时间复杂度较低等优点,因此,将Tile Coding编码与基于模型的Actor-Critic方法结合,并将所得算法应用于强化学习仿真实验。实验结果表明,所得算法具有较好的性能。 展开更多
关键词 强化学习 TILE CODING actor-critic 模型学习 函数逼近
下载PDF
Path Planning and Tracking Control for Parking via Soft Actor-Critic Under Non-Ideal Scenarios 被引量:1
7
作者 Xiaolin Tang Yuyou Yang +3 位作者 Teng Liu Xianke Lin Kai Yang Shen Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期181-195,共15页
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja... Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees. 展开更多
关键词 Automatic parking control strategy parking deviation(APS) soft actor-critic(SAC)
下载PDF
基于actor-critic框架的在线积分强化学习算法研究 被引量:4
8
作者 蔡军 苟文耀 刘颜 《电子测量与仪器学报》 CSCD 北大核心 2023年第3期194-201,共8页
针对轮式移动机器人动力学系统难以实现无模型的最优跟踪控制问题,提出了一种基于actor-critic框架的在线积分强化学习控制算法。首先,构建RBF评价神经网络并基于近似贝尔曼误差设计该网络的权值更新律,以拟合二次型跟踪控制性能指标函... 针对轮式移动机器人动力学系统难以实现无模型的最优跟踪控制问题,提出了一种基于actor-critic框架的在线积分强化学习控制算法。首先,构建RBF评价神经网络并基于近似贝尔曼误差设计该网络的权值更新律,以拟合二次型跟踪控制性能指标函数。其次,构建RBF行为神经网络并以最小化性能指标函数为目标设计权值更新律,补偿动力学系统中的未知项。最后,通过Lyapunov理论证明了所提出的积分强化学习控制算法可以使得价值函数,行为神经网络权值误差与评价神经网络权值误差一致最终有界。仿真和实验结果表明,该算法不仅可以实现对恒定速度以及时变速度的跟踪,还可以在嵌入式平台上进行实现。 展开更多
关键词 积分强化学习 RBF神经网络 非线性仿射系统 跟踪控制
下载PDF
深度学习赋能波束管理:现状、挑战与机遇
9
作者 王昭诚 马可 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期40-50,共11页
随着载波频率的不断提高和大规模天线阵列的广泛部署,基于模拟移相器的波束赋形成为下一代无线通信的标志性技术之一。此时,波束管理被用于获取和维护基站和用户端具有最大接收功率的最优波束对,以保障可靠的无线通信服务。传统波束管... 随着载波频率的不断提高和大规模天线阵列的广泛部署,基于模拟移相器的波束赋形成为下一代无线通信的标志性技术之一。此时,波束管理被用于获取和维护基站和用户端具有最大接收功率的最优波束对,以保障可靠的无线通信服务。传统波束管理方法往往依赖于海量搜索。同时,传统数学模型无法全面的、准确刻画非线性的波束的内在关联和高维无线环境特征,因而难以取得令人满意的波束增益性能。近年来,得益于深度学习强大的自适应拟合能力,深度学习赋能波束管理得到了国内外广泛关注。本文总结了深度学习赋能波束管理的研究进展,并展望了未来的研究方向。首先,阐述了深度学习应用于波束管理的典型场景和潜在优势;随后,从空/时/频域切入,讨论当前深度学习赋能波束管理的主要研究路线和代表性工作;最后,面向更大规模的无线网络、更多元的波束管理功能和更鲁棒的深度学习模型,阐述未来的研究挑战与机遇。 展开更多
关键词 深度学习 波束管理 空域 时域 频域
下载PDF
融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型
10
作者 杨莎莎 于亚新 +3 位作者 王跃茹 许晶铭 魏阳杰 李新华 《计算机科学》 CSCD 北大核心 2024年第7期80-88,共9页
强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略... 强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略完全不同;3)忽略患者的历史观测数据和治疗史,从而不能很好地得到患者状态,进而导致不能学到最优策略。基于此,提出了融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型DOSAC-DTR。首先,考虑学到的策略所推荐的治疗行动的风险性,在Actor-Critic框架中融入Dead-ends概念;其次,为缓解分布偏移问题,在Actor-Critic框架中融入医生监督,在最大化预期回报的同时,最小化所学策略与医生策略之间的差距;最后,为了得到包含患者关键历史信息的状态表示,使用基于LSTM的编码器解码器模型对患者的历史观测数据和治疗史进行建模。实验结果表明,DOSAC-DTR相比基线方法有更好的性能,可以得到更低的估计死亡率以及更高的Jaccard系数。 展开更多
关键词 动态治疗策略 Dead-ends actor-critic 状态表征
下载PDF
基于不确定性估计的离线确定型Actor-Critic
11
作者 冯涣婷 程玉虎 王雪松 《计算机学报》 EI CAS CSCD 北大核心 2024年第4期717-732,共16页
Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱... Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱动的强化学习范式,强调从静态样本数据集中学习策略,与环境无探索交互,为机器人、自动驾驶、健康护理等真实世界部署应用提供了可行的解决方案,是近年来的研究热点.目前,离线强化学习方法存在学习策略和行为策略之间的分布偏移挑战,针对这个挑战,通常采用策略约束或值函数正则化来限制访问数据集分布之外(Out-Of-Distribution,OOD)的动作,从而导致学习性能过于保守,阻碍了值函数网络的泛化和学习策略的性能提升.为此,本文利用不确定性估计和OOD采样来平衡值函数学习的泛化性和保守性,提出一种基于不确定性估计的离线确定型Actor-Critic方法(Offline Deterministic Actor-Critic based on UncertaintyEstimation,ODACUE).首先,针对确定型策略,给出一种Q值函数的不确定性估计算子定义,理论证明了该算子学到的Q值函数是最优Q值函数的一种悲观估计.然后,将不确定性估计算子应用于确定型Actor-Critic框架中,通过对不确定性估计算子进行凸组合构造Critic学习的目标函数.最后,D4RL基准数据集任务上的实验结果表明:相较于对比算法,ODACUE在11个不同质量等级数据集任务中的总体性能提升最低达9.56%,最高达64.92%.此外,参数分析和消融实验进一步验证了ODACUE的稳定性和泛化能力. 展开更多
关键词 离线强化学习 不确定性估计 分布外采样 凸组合 actor-critic
下载PDF
Actor-critic框架下的二次指派问题求解方法
12
作者 李雪源 韩丛英 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第2期275-284,共10页
二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完... 二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完全图并构造相应的关联图,从而将设施和地点的指派任务转化为关联图上的节点选择任务,基于actor-critic框架,提出一种全新的求解算法ACQAP。首先,利用多头注意力机制构造策略网络,处理来自图卷积神经网络的节点表征向量;然后,通过actor-critic算法预测每个节点被作为最优节点输出的概率;最后,依据该概率在可行时间内输出满足目标奖励函数的动作决策序列。该算法摆脱人工设计,且适用于不同规模的输入,更加灵活可靠。实验结果表明,在QAPLIB实例上,本算法在精度媲美传统启发式算法的前提下,迁移泛化能力更强;同时相对于NGM等基于学习的算法,求解的指派费用与最优解之间的偏差最小,且在大部分实例中,偏差均小于20%。 展开更多
关键词 二次指派问题 图卷积神经网络 深度强化学习 多头注意力机制 actor-critic算法
下载PDF
无人机辅助物联网中基于Safe Actor-Critic的信息年龄最小化研究
13
作者 魏宪鹏 付芳 张志才 《测试技术学报》 2024年第1期71-78,共8页
无人机作为一种新的通信设备,有望在物联网数据采集、监控等业务中发挥关键作用。为保证所采集数据的时效性,利用信息年龄来衡量无人机从物联网设备接收到的数据新鲜度。通过联合优化无人机轨迹和无人机与物联网设备的关联策略以最小化... 无人机作为一种新的通信设备,有望在物联网数据采集、监控等业务中发挥关键作用。为保证所采集数据的时效性,利用信息年龄来衡量无人机从物联网设备接收到的数据新鲜度。通过联合优化无人机轨迹和无人机与物联网设备的关联策略以最小化信息年龄加权和,并保证无人机累积飞行能量消耗满足预算要求。由于上述问题同时受短期和长期约束条件的限制,将问题建模为受约束的马尔可夫决策过程(CMDP),并利用Safe Actor-Critic来求解。仿真结果表明,所提算法在最小化信息年龄的同时,能有效保证能量预算。 展开更多
关键词 无人机 信息年龄 物联网 Safe actor-critic
下载PDF
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
14
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
下载PDF
基于强化学习Actor-Critic算法的音乐生成 被引量:3
15
作者 白勇 齐林 帖云 《计算机应用与软件》 北大核心 2020年第5期118-122,182,共6页
提出一种利用强化学习Actor-Critic(A-C)训练神经网络生成音乐的方法。常规的LSTM音乐生成网络在生成音乐时并没有考虑到实际的作曲情况,只是通过先前训练保存的策略来选择下一个音符,所以生成的音乐稳定性差、风格模糊。引入一个经过... 提出一种利用强化学习Actor-Critic(A-C)训练神经网络生成音乐的方法。常规的LSTM音乐生成网络在生成音乐时并没有考虑到实际的作曲情况,只是通过先前训练保存的策略来选择下一个音符,所以生成的音乐稳定性差、风格模糊。引入一个经过训练的Critic网络,该网络能够评估LSTM网络输出音符的价值,以此更新LSTM网络的生成策略。这形成了一个更接近生成阶段的训练过程,并允许优化特定的音乐风格,所以生成的音乐结构稳定,更具风格。对该方法生成的音乐进行验证,证明了其有效性。 展开更多
关键词 长短期记忆网络 音乐生成 深度学习 强化学习
下载PDF
基于Actor-Critic强化学习的倒立摆智能控制方法 被引量:4
16
作者 邱宇宸 《武汉冶金管理干部学院学报》 2018年第4期88-90,共3页
针对模型未知的运动系统的控制问题,提出一种基于Actor-Critic强化学习的智能控制方法。该方法由两个神经网络构成,Actor为基于概率的动作执行器,而Critic则对Actor的每一个动作进行评价以修正Actor的权值,Critic则通过环境反馈的得分... 针对模型未知的运动系统的控制问题,提出一种基于Actor-Critic强化学习的智能控制方法。该方法由两个神经网络构成,Actor为基于概率的动作执行器,而Critic则对Actor的每一个动作进行评价以修正Actor的权值,Critic则通过环境反馈的得分进行评价标准更新,整体算法通过多次探索学习获得收敛。文中设计的Actor-Critic算法在MATLAB平台上对模型未知的一级倒立摆进行仿真实验,该算法能够在多次尝试之后,实现倒立摆平衡。 展开更多
关键词 actor-critic 强化学习 智能控制 倒立摆控制 神经网络
下载PDF
基于Actor-Critic自适应PID的钢筋套丝头跟踪检测控制系统研究
17
作者 秦天为 冯云剑 《工业控制计算机》 2024年第2期75-77,共3页
为适应流水线节奏,不影响生产进程,从而更好地实现钢筋套丝头质量检测和尺寸测量的自动化与智能化,设计了基于同步带直线导轨的钢筋套丝头检测跟踪系统,并提出了一种基于Actor-Critic的自适应PID控制方法,用强化学习的方法根据环境反馈... 为适应流水线节奏,不影响生产进程,从而更好地实现钢筋套丝头质量检测和尺寸测量的自动化与智能化,设计了基于同步带直线导轨的钢筋套丝头检测跟踪系统,并提出了一种基于Actor-Critic的自适应PID控制方法,用强化学习的方法根据环境反馈自动调节PID控制器的比例、积分、微分参数。对该方法和其他PID控制方法的响应性能指标进行实验和分析,实验结果表明该方法能够实现高精度、快速响应的跟踪拍摄,保证高精度的套丝头质量检测。 展开更多
关键词 钢筋套丝头检测 跟踪拍摄 自适应PID控制 actor-critic
下载PDF
基于自然梯度Actor-Critic强化学习的卫星边缘网络服务功能链部署方法 被引量:5
18
作者 高媛 方海 +1 位作者 赵扬 杨旭 《电子与信息学报》 EI CSCD 北大核心 2023年第2期455-463,共9页
鉴于低轨卫星网络的高动态性和空间环境的复杂性,如何提供在线的快速服务功能链(SFC)部署方法,成为低轨卫星边缘网络中亟待解决的问题。综合考虑节点和链路容量等约束以及服务迁移等切换代价,针对部署多接入边缘计算(MEC)服务器的低轨... 鉴于低轨卫星网络的高动态性和空间环境的复杂性,如何提供在线的快速服务功能链(SFC)部署方法,成为低轨卫星边缘网络中亟待解决的问题。综合考虑节点和链路容量等约束以及服务迁移等切换代价,针对部署多接入边缘计算(MEC)服务器的低轨卫星网络,该文提出一种基于自然梯度参与者-评价者(Actor-Critic)强化学习架构的SFC在线部署方法。首先,针对低轨卫星网络的环境高动态性,对实时容量约束和迁移代价进行建模;其次,引入马尔可夫决策过程(MDP),综合考虑服务迁移和卫星坐标等因素,描述低轨卫星网络的状态转移过程;最后,提出一种基于自然梯度的在线SFC部署强化学习方法,不同于标准梯度,自然梯度法进行模型层面的更新,以避免神经网络的训练陷入局部最优解。仿真结果表明,该文方法可逼近全局最优解,并在端到端时延性能上优于基于标准梯度的强化学习部署方法。 展开更多
关键词 服务功能链 强化学习 低轨卫星网络 服务迁移
下载PDF
深度学习在口腔影像分析中的应用
19
作者 杨予萱 谭静怡 +3 位作者 周鹂鹂 边子睿 陈伊凡 吴燕岷 《中国组织工程研究》 CAS 北大核心 2025年第11期2385-2393,共9页
背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习... 背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习技术背景下口腔医学变革的新方向。方法:应用计算机检索PubMed数据库中2017年1月至2024年1月发表的深度学习在口腔医学影像领域应用的相关文献,检索词为“deep learning,artificial intelligence,stomatology,oral medical imaging”等,按入组标准筛选后最终纳入80篇文献进行综述。结果与结论:(1)经典的深度学习模型包括人工神经网络、卷积神经网络、递归神经网络和生成对抗网络等,学者们以或竞争或联合的形式运用这些模型,实现更高效的对口腔医学影像的解释。(2)在口腔医学领域,疾病诊断和治疗方案的制定在很大程度上依赖医学影像资料的判读,而深度学习技术拥有强大的图像处理能力,无论是在辅助诊断龋齿、根尖周炎、牙根纵裂、牙周病、颌骨囊肿等疾病方面,还是在辅助第三磨牙拔除术、颈淋巴结清扫术等治疗操作的术前评估方面,深度学习都能帮助临床医生提高决策的准确率与效率。(3)尽管深度学习有望成为口腔疾病诊治的重要辅助工具,但它在模型技术、安全伦理、法律监管方面仍有一定的局限性,未来的研究应侧重于证明深度学习的可推广性、稳健性和临床实用性,寻找将深度学习自动化决策支持系统应用于常规临床工作流程中的最佳方式。 展开更多
关键词 深度学习 口腔医学 口腔影像 疾病诊断 口腔智能医学
下载PDF
机器学习预测肱骨近端骨折钢板内固定后继发性螺钉切出的风险
20
作者 徐大星 涂泽松 +2 位作者 纪木强 许伟鹏 牛维 《中国组织工程研究》 CAS 北大核心 2025年第15期3179-3187,共9页
背景:继发性螺钉切出关节面是肱骨近端骨折锁定钢板内固定术后的主要并发症之一,切出的螺钉会磨损关节盂和引起肩峰撞击,影响肩关节功能。因此,准确的风险预测有积极的临床意义。目的:通过机器学习方法筛选肱骨近端骨折钢板内固定后继... 背景:继发性螺钉切出关节面是肱骨近端骨折锁定钢板内固定术后的主要并发症之一,切出的螺钉会磨损关节盂和引起肩峰撞击,影响肩关节功能。因此,准确的风险预测有积极的临床意义。目的:通过机器学习方法筛选肱骨近端骨折钢板内固定后继发性螺钉切出的风险因素,开发并验证风险预测模型,便于临床医生早期甄别并干预高风险患者。方法:收集2013年6月至2022年6月接受锁定钢板内固定治疗的214例肱骨近端骨折患者的临床资料作为训练组建立模型,将同一时间段另一医院收治的同类患者61例纳入外部验证组。按照患者术后是否出现继发性螺钉切出,分为螺钉切出组和螺钉维持组。训练组利用随机森林、支持向量机、逻辑回归3种机器学习算法构建预测模型;采用递归特征消除法、10折交叉验证重抽样作为变量的筛选方法,并将3种模型准确度最高时纳入变量的交集作为与螺钉切出高度相关的可靠风险变量。通过R语言软件构建动态预测模型,以网页计算器形式展示,并对模型进行内、外部验证。模型内部检验采用Bootstrap法重抽样1000次,使用受试者工作特征曲线下面积、校准曲线、临床决策曲线评价模型的区分度、校准能力及临床应用价值。通过Youden指数确定预测模型的最佳风险分界值,据此将外部验证组患者分为高、低风险组,根据模型风险预测能力的准确度来评价其稳定性和外延性。结果与结论:①机器学习算法筛选出继发性螺钉切出高度相关的4个风险变量,分别为肱骨近端内侧柱皮质支撑、三角肌结节指数、骨折类型及术后复位情况;②构建的风险预测模型表现出良好的区分度和准确度[曲线下面积=0.874,95%置信区间(0.827,0.922)],校准曲线显示模型预测风险和实际发生风险有较好的一致性;③临床决策曲线提示风险阈值概率在0.1-0.75范围内时,模型具有较好的临床适用性;④风险概率为26%是模型风险分层的最佳阈值,外部验证组利用模型风险分层预测螺钉切出的总正确率为84%;⑤结果说明该风险预测模型准确度和外延性较好,可为指导临床治疗提供依据。 展开更多
关键词 肱骨近端骨折 继发性螺钉切出 机器学习 影响因素 风险预测模型
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部