期刊文献+
共找到357,108篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Actor-Critic算法的多传感器交叉提示技术
1
作者 韦道知 张曌宇 +1 位作者 谢家豪 李宁 《系统工程与电子技术》 EI CSCD 北大核心 2023年第6期1624-1632,共9页
针对在减少战场资源浪费、平衡战场效费比的同时提高目标探测概率,保证目标的可持续跟踪,提出利用改进Actor-Critic算法的多传感器交叉提示技术进行目标探测。首先,综合传感器探测、能耗、时效等因素搭建基于“交叉提示”传感器的动态... 针对在减少战场资源浪费、平衡战场效费比的同时提高目标探测概率,保证目标的可持续跟踪,提出利用改进Actor-Critic算法的多传感器交叉提示技术进行目标探测。首先,综合传感器探测、能耗、时效等因素搭建基于“交叉提示”传感器的动态管理评估模型;其次,重点分析利用Actor-Critic交叉提示算法的传感器管理决策规则,并且提出了Actor-Critic算法,以根据任务自身需求组建中央评价网络,加大传感器与外部环境的交互。仿真结果表明,改进的算法可以加速网络收益,实现对目标的持续性探测,加强传感器之间的交叉提示功能,提升调度的智能化水平,具有较大的应用价值。 展开更多
关键词 多传感器交叉提示 actor-critic算法 强化学习 目标探测 传感器资源调度
下载PDF
基于Actor-Critic算法的多无人机协同空战目标重分配方法 被引量:2
2
作者 陈宇轩 王国强 +1 位作者 罗贺 马滢滢 《无线电工程》 北大核心 2022年第7期1266-1275,共10页
目标重分配问题是多无人机协同空战中亟需解决的关键问题之一。考虑到空战中的不确定性、实时性等特点,建立了多无人机协同空战目标重分配问题的数学模型,结合强化学习核心概念,提出了基于Actor-Critic算法的多无人机协同空战目标重分... 目标重分配问题是多无人机协同空战中亟需解决的关键问题之一。考虑到空战中的不确定性、实时性等特点,建立了多无人机协同空战目标重分配问题的数学模型,结合强化学习核心概念,提出了基于Actor-Critic算法的多无人机协同空战目标重分配框架,构建了基于目标重分配的马尔科夫决策过程、Actor网络结构和Critic网络结构。针对强化学习算法中存在的奖励稀疏问题,设计了局部回报和全局汇报相结合的双层回报函数。在基于VR-Forces仿真平台中验证了该方法的有效性。实验结果表明,提出的多无人机协同空战目标重分配方法能够有效地提升空战对抗的胜率。 展开更多
关键词 无人机 空战 目标重分配 强化学习 actor-critic算法
下载PDF
基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制 被引量:4
3
作者 马丽新 刘晨 刘磊 《应用数学和力学》 CSCD 北大核心 2022年第1期104-114,共11页
研究了分数阶多自主体系统的最优主-从一致性问题.在考虑控制器周期间歇的前提下,将分数阶微分的一阶近似逼近式、事件触发机制和强化学习中的actor-critic算法有机整合,设计了基于周期间歇事件触发策略的强化学习算法结构.最后,通过数... 研究了分数阶多自主体系统的最优主-从一致性问题.在考虑控制器周期间歇的前提下,将分数阶微分的一阶近似逼近式、事件触发机制和强化学习中的actor-critic算法有机整合,设计了基于周期间歇事件触发策略的强化学习算法结构.最后,通过数值仿真实验证明了该算法的可行性和有效性. 展开更多
关键词 分数阶多自主体系统 actor-critic算法 最优主-从一致性 事件触发 间歇
下载PDF
基于Tile Coding编码和模型学习的Actor-Critic算法 被引量:3
4
作者 金玉净 朱文文 +1 位作者 伏玉琛 刘全 《计算机科学》 CSCD 北大核心 2014年第6期239-242,249,共5页
Actor-Critic是一类具有较好性能及收敛保证的强化学习方法,然而,Agent在学习和改进策略的过程中并没有对环境的动态性进行学习,导致Actor-Critic方法的性能受到一定限制。此外,Actor-Critic方法中需要近似地表示策略以及值函数,其中状... Actor-Critic是一类具有较好性能及收敛保证的强化学习方法,然而,Agent在学习和改进策略的过程中并没有对环境的动态性进行学习,导致Actor-Critic方法的性能受到一定限制。此外,Actor-Critic方法中需要近似地表示策略以及值函数,其中状态和动作的编码方法以及参数对Actor-Critic方法有重要的影响。Tile Coding编码具有简单易用、计算时间复杂度较低等优点,因此,将Tile Coding编码与基于模型的Actor-Critic方法结合,并将所得算法应用于强化学习仿真实验。实验结果表明,所得算法具有较好的性能。 展开更多
关键词 强化学习 TILE CODING actor-critic 模型学习 函数逼近
下载PDF
基于批量递归最小二乘的自然Actor-Critic算法 被引量:3
5
作者 王国芳 方舟 李平 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第7期1335-1342,共8页
为了减轻Actor-Critic结构中智能体用最小二乘法估计自然梯度时的在线运算负担,提高运算实时性,提出新的学习算法:NAC-BRLS.该算法在Critic中利用批量递归最小二乘法估计自然梯度,根据估计得到的梯度乐观地更新策略.批量递归最小二乘法... 为了减轻Actor-Critic结构中智能体用最小二乘法估计自然梯度时的在线运算负担,提高运算实时性,提出新的学习算法:NAC-BRLS.该算法在Critic中利用批量递归最小二乘法估计自然梯度,根据估计得到的梯度乐观地更新策略.批量递归最小二乘法的引入使得智能体能根据自身运算能力自由调整各批次运算的数据量,即每次策略估计时使用的数据量,在全乐观和部分乐观之间进行权衡,大大提高了NAC-LSTD算法的灵活性.山地车仿真实验表明,与NAC-LSTD算法相比,NAC-BRLS算法在保证一定收敛性能的前提下,能够明显降低智能体的单步平均运算负担. 展开更多
关键词 自然梯度 actor-critic 批次更新 递归最小二乘
下载PDF
Actor-critic框架下的二次指派问题求解方法
6
作者 李雪源 韩丛英 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第2期275-284,共10页
二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完... 二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完全图并构造相应的关联图,从而将设施和地点的指派任务转化为关联图上的节点选择任务,基于actor-critic框架,提出一种全新的求解算法ACQAP。首先,利用多头注意力机制构造策略网络,处理来自图卷积神经网络的节点表征向量;然后,通过actor-critic算法预测每个节点被作为最优节点输出的概率;最后,依据该概率在可行时间内输出满足目标奖励函数的动作决策序列。该算法摆脱人工设计,且适用于不同规模的输入,更加灵活可靠。实验结果表明,在QAPLIB实例上,本算法在精度媲美传统启发式算法的前提下,迁移泛化能力更强;同时相对于NGM等基于学习的算法,求解的指派费用与最优解之间的偏差最小,且在大部分实例中,偏差均小于20%。 展开更多
关键词 二次指派问题 图卷积神经网络 深度强化学习 多头注意力机制 actor-critic算法
下载PDF
基于对称扰动采样的Actor-critic算法 被引量:1
7
作者 张春元 朱清新 《控制与决策》 EI CSCD 北大核心 2015年第12期2161-2167,共7页
针对传统Actor-critic(AC)方法在求解连续空间序贯决策问题时收敛速度较慢、收敛质量不高的问题,提出一种基于对称扰动采样的AC算法框架.首先,框架采用高斯分布作为策略分布,在每一时间步对当前动作均值对称扰动,从而生成两个动作与环... 针对传统Actor-critic(AC)方法在求解连续空间序贯决策问题时收敛速度较慢、收敛质量不高的问题,提出一种基于对称扰动采样的AC算法框架.首先,框架采用高斯分布作为策略分布,在每一时间步对当前动作均值对称扰动,从而生成两个动作与环境并行交互;然后,基于两者的最大时域差分(TD)误差选取Agent的行为动作,并对值函数参数进行更新;最后,基于两者的平均常规梯度或增量自然梯度对策略参数进行更新.理论分析和仿真结果表明,所提框架具有较好的收敛性和计算效率. 展开更多
关键词 actor-critic方法 对称扰动采样 连续空间 强化学习
原文传递
滑模控制器参数整定的Actor-Critic学习算法 被引量:4
8
作者 宋仕元 胡剑波 +1 位作者 王应洋 韩霖晓 《电光与控制》 CSCD 北大核心 2020年第9期24-27,49,共5页
针对滑模变结构控制律设计过程中出现的控制参数整定问题,提出一种基于强化学习的滑模变结构控制参数寻优方法。首先,根据系统设计了相应的滑模控制律,并给出了参数选择的范围,设计了基于Actor-Critic结构的参数在线整定器。然后,选择TD... 针对滑模变结构控制律设计过程中出现的控制参数整定问题,提出一种基于强化学习的滑模变结构控制参数寻优方法。首先,根据系统设计了相应的滑模控制律,并给出了参数选择的范围,设计了基于Actor-Critic结构的参数在线整定器。然后,选择TD-Error方法进行求解计算,并用梯度下降法计算出神经网络权值的更新取值。最后,以固定翼飞行器纵向通道系统为例进行了仿真和实验验证,实验结果说明所提出控制方法减小了控制参数整定的盲目性,有效提升了系统的动态性能。 展开更多
关键词 滑模变结构控制 actor-critic 强化学习 参数整定
下载PDF
Path Planning and Tracking Control for Parking via Soft Actor-Critic Under Non-Ideal Scenarios 被引量:1
9
作者 Xiaolin Tang Yuyou Yang +3 位作者 Teng Liu Xianke Lin Kai Yang Shen Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期181-195,共15页
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja... Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees. 展开更多
关键词 Automatic parking control strategy parking deviation(APS) soft actor-critic(SAC)
下载PDF
融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型
10
作者 杨莎莎 于亚新 +3 位作者 王跃茹 许晶铭 魏阳杰 李新华 《计算机科学》 CSCD 北大核心 2024年第7期80-88,共9页
强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略... 强化学习对数学模型依赖性低,利用经验便于架构和优化模型,非常适合用于动态治疗策略学习。但现有研究仍存在以下问题:1)学习策略最优性的同时未考虑风险,导致学到的策略存在一定的风险;2)忽略了分布偏移问题,导致学到的策略与医生策略完全不同;3)忽略患者的历史观测数据和治疗史,从而不能很好地得到患者状态,进而导致不能学到最优策略。基于此,提出了融合Dead-ends和离线监督Actor-Critic的动态治疗策略生成模型DOSAC-DTR。首先,考虑学到的策略所推荐的治疗行动的风险性,在Actor-Critic框架中融入Dead-ends概念;其次,为缓解分布偏移问题,在Actor-Critic框架中融入医生监督,在最大化预期回报的同时,最小化所学策略与医生策略之间的差距;最后,为了得到包含患者关键历史信息的状态表示,使用基于LSTM的编码器解码器模型对患者的历史观测数据和治疗史进行建模。实验结果表明,DOSAC-DTR相比基线方法有更好的性能,可以得到更低的估计死亡率以及更高的Jaccard系数。 展开更多
关键词 动态治疗策略 Dead-ends actor-critic 状态表征
下载PDF
无人机辅助物联网中基于Safe Actor-Critic的信息年龄最小化研究
11
作者 魏宪鹏 付芳 张志才 《测试技术学报》 2024年第1期71-78,共8页
无人机作为一种新的通信设备,有望在物联网数据采集、监控等业务中发挥关键作用。为保证所采集数据的时效性,利用信息年龄来衡量无人机从物联网设备接收到的数据新鲜度。通过联合优化无人机轨迹和无人机与物联网设备的关联策略以最小化... 无人机作为一种新的通信设备,有望在物联网数据采集、监控等业务中发挥关键作用。为保证所采集数据的时效性,利用信息年龄来衡量无人机从物联网设备接收到的数据新鲜度。通过联合优化无人机轨迹和无人机与物联网设备的关联策略以最小化信息年龄加权和,并保证无人机累积飞行能量消耗满足预算要求。由于上述问题同时受短期和长期约束条件的限制,将问题建模为受约束的马尔可夫决策过程(CMDP),并利用Safe Actor-Critic来求解。仿真结果表明,所提算法在最小化信息年龄的同时,能有效保证能量预算。 展开更多
关键词 无人机 信息年龄 物联网 Safe actor-critic
下载PDF
基于不确定性估计的离线确定型Actor-Critic
12
作者 冯涣婷 程玉虎 王雪松 《计算机学报》 EI CAS CSCD 北大核心 2024年第4期717-732,共16页
Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱... Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱动的强化学习范式,强调从静态样本数据集中学习策略,与环境无探索交互,为机器人、自动驾驶、健康护理等真实世界部署应用提供了可行的解决方案,是近年来的研究热点.目前,离线强化学习方法存在学习策略和行为策略之间的分布偏移挑战,针对这个挑战,通常采用策略约束或值函数正则化来限制访问数据集分布之外(Out-Of-Distribution,OOD)的动作,从而导致学习性能过于保守,阻碍了值函数网络的泛化和学习策略的性能提升.为此,本文利用不确定性估计和OOD采样来平衡值函数学习的泛化性和保守性,提出一种基于不确定性估计的离线确定型Actor-Critic方法(Offline Deterministic Actor-Critic based on UncertaintyEstimation,ODACUE).首先,针对确定型策略,给出一种Q值函数的不确定性估计算子定义,理论证明了该算子学到的Q值函数是最优Q值函数的一种悲观估计.然后,将不确定性估计算子应用于确定型Actor-Critic框架中,通过对不确定性估计算子进行凸组合构造Critic学习的目标函数.最后,D4RL基准数据集任务上的实验结果表明:相较于对比算法,ODACUE在11个不同质量等级数据集任务中的总体性能提升最低达9.56%,最高达64.92%.此外,参数分析和消融实验进一步验证了ODACUE的稳定性和泛化能力. 展开更多
关键词 离线强化学习 不确定性估计 分布外采样 凸组合 actor-critic
下载PDF
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
13
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
下载PDF
基于Actor-Critic自适应PID的钢筋套丝头跟踪检测控制系统研究
14
作者 秦天为 冯云剑 《工业控制计算机》 2024年第2期75-77,共3页
为适应流水线节奏,不影响生产进程,从而更好地实现钢筋套丝头质量检测和尺寸测量的自动化与智能化,设计了基于同步带直线导轨的钢筋套丝头检测跟踪系统,并提出了一种基于Actor-Critic的自适应PID控制方法,用强化学习的方法根据环境反馈... 为适应流水线节奏,不影响生产进程,从而更好地实现钢筋套丝头质量检测和尺寸测量的自动化与智能化,设计了基于同步带直线导轨的钢筋套丝头检测跟踪系统,并提出了一种基于Actor-Critic的自适应PID控制方法,用强化学习的方法根据环境反馈自动调节PID控制器的比例、积分、微分参数。对该方法和其他PID控制方法的响应性能指标进行实验和分析,实验结果表明该方法能够实现高精度、快速响应的跟踪拍摄,保证高精度的套丝头质量检测。 展开更多
关键词 钢筋套丝头检测 跟踪拍摄 自适应PID控制 actor-critic
下载PDF
DAO媒介:驱动未来社会算法化与自组织的元媒介
15
作者 喻国明 苏健威 《新疆师范大学学报(哲学社会科学版)》 北大核心 2025年第1期132-141,共10页
DAO媒介是以区块链算法等技术为基础,支持数字社群协同自治的媒介,具有区块链、智能合约与投票等功能特性和要素确权、技术信任、规则构架以及场景聚合等价值禀赋。对于数字生态显露的各种问题,“算法化”是重构数字生态、降解社会系统... DAO媒介是以区块链算法等技术为基础,支持数字社群协同自治的媒介,具有区块链、智能合约与投票等功能特性和要素确权、技术信任、规则构架以及场景聚合等价值禀赋。对于数字生态显露的各种问题,“算法化”是重构数字生态、降解社会系统复杂性的关键机制,DAO媒介是支撑“自组织式”算法化的元媒介。DAO媒介与数字文明时代喷发的微粒个体、微资源、微价值、微需求、微场景等相匹配,能够深度匹配人的个性与自我,形成有效的趣缘连接,进而极大地释放数字文明的生产力。DAO媒介将深刻影响社会系统的构造,将微粒个体与相关社会要素“包裹”为闭环子系统,支持其准开放的系统边界、有效的异质性整合、可持续的规则重构、子系统与父级系统的持续分化和快速进化,等等。在数字文明时代,DAO媒介将使“重新部落化”的“地球村”变为现实,其驱动构筑的DAO社会将更加多元、更加富有创造力,不断拓展人类群体实践的自由度,使人类在高度异质性聚合基础上更加和谐有序地整合协同。 展开更多
关键词 DAO 数字媒介 算法 自组织 社会系统
下载PDF
基于自适应变异粒子群算法的风光储微网调度
16
作者 聂文龙 李再冉 +1 位作者 吴彩霞 王远 《山西建筑》 2025年第2期120-123,共4页
为克服传统粒子群算法在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化的微电网调度求解方法。惯性权重采用自适应正态分布递减,随着迭代次数的增加更新粒子位置的移动策略,并且在算法后期引入变异环节... 为克服传统粒子群算法在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化的微电网调度求解方法。惯性权重采用自适应正态分布递减,随着迭代次数的增加更新粒子位置的移动策略,并且在算法后期引入变异环节。为验证算法的有效性,文章与其他算法进行收敛性能对比,并对两种典型天气情况下的微网运行成本模型仿真求解,得到最优调度。算例结果表明,改进算法能够对粒子全局最优搜索优化,效果优于其他算法,可合理调配分布式电源出力时段,具有良好的可行性。 展开更多
关键词 微电网 调度 粒子群算法 自适应 变异
下载PDF
短定子磁浮列车基于悬浮间隙实现测速和定位的算法仿真及应用
17
作者 汤彪 朱跃欧 +2 位作者 蒋毅 乔若辉 吴定鼎 《湖南工业大学学报》 2025年第1期51-56,共6页
短定子磁浮列车测速和定位技术实现方式与传统轮轨不同,目前有多种技术实现方式,但都需要在磁浮列车上设置测速和定位设备或系统,且与悬浮控制系统相互独立,但悬浮控制系统对速度信号和位置信号又有一定的依赖性。因此,设计了一种基于... 短定子磁浮列车测速和定位技术实现方式与传统轮轨不同,目前有多种技术实现方式,但都需要在磁浮列车上设置测速和定位设备或系统,且与悬浮控制系统相互独立,但悬浮控制系统对速度信号和位置信号又有一定的依赖性。因此,设计了一种基于悬浮间隙实现测速和定位的算法,并通过仿真达到算法设计预期目的,最后通过编程将算法嵌入磁浮列车的悬浮控制系统硬件平台,实现测速和定位的算法应用,测速和定位信号完全集成于悬浮控制系统中,摆脱悬浮控制系统对外置测速定位系统的依赖,提升磁浮列车在轨道交通市场的竞争力。 展开更多
关键词 短定子磁浮列车 悬浮间隙 测速 定位 算法仿真
下载PDF
基于图神经网络的瑜伽动作多特征融合识别算法
18
作者 王嫣祺 《湖南工业大学学报》 2025年第2期28-33,共6页
针对现有瑜伽动作识别方法不能挖掘动作与形体特征等深层次信息的问题,提出了一种基于多特征融合图神经网络的改进瑜伽动作识别算法,该算法利用瑜伽的动作历史和形体信息,结合多特征融合和图神经网络的优势,通过建模形体和动作之间的关... 针对现有瑜伽动作识别方法不能挖掘动作与形体特征等深层次信息的问题,提出了一种基于多特征融合图神经网络的改进瑜伽动作识别算法,该算法利用瑜伽的动作历史和形体信息,结合多特征融合和图神经网络的优势,通过建模形体和动作之间的关系图,得到形体信息对不同瑜伽动作类别的影响程度,以及历史动作的长时和短时性。在实验中,对比了该方法与其他算法在瑜伽动作识别任务中的表现。结果表明,该方法在准确率、精确率、召回率和F_(1)值等指标上有明显的提高,证明了该瑜伽动作识别算法的有效性。 展开更多
关键词 瑜伽动作识别 多特征融合算法 GNN 图像识别
下载PDF
不完整模态数据下基于布谷鸟算法的结构损伤识别研究
19
作者 郑昱 马青云 +1 位作者 邢云霞 李萌 《山西建筑》 2025年第1期70-74,共5页
鉴于安装在结构上的少量传感器难以获得完整的模态数据,文章提出一种使用不完整模态数据来定位和量化结构损伤的有效方法。首先,采用一种改进的缩聚系统方法来匹配有限元模型和实际测量中的自由度差异,从而解决模态空间不完整性问题。然... 鉴于安装在结构上的少量传感器难以获得完整的模态数据,文章提出一种使用不完整模态数据来定位和量化结构损伤的有效方法。首先,采用一种改进的缩聚系统方法来匹配有限元模型和实际测量中的自由度差异,从而解决模态空间不完整性问题。然后,利用不完整模态数据获得的结构柔度矩阵计算结构的静态位移。最后,利用结构的静态位移建立损伤优化函数,并采用布谷鸟算法进行求解。通过数值模拟和试验验证了所提方法的有效性和鲁棒性。数值和试验结果表明,在测量传感器数量有限的情况下,所提出的损伤识别方法仍具有高效且稳定的性能。 展开更多
关键词 损伤识别 不完整模态数据 柔度矩阵 布谷鸟算法
下载PDF
麦克纳姆轮农业机器人路径跟踪——基于改进野马算法
20
作者 穆占海 艾尔肯·亥木都拉 郑威强 《农机化研究》 北大核心 2025年第2期1-8,18,共9页
针对麦克纳姆轮农业机器人在智能大棚中的路径跟踪问题,建立了运动学模型和动力学模型,设计了一种新型的双环比例微分-分数阶比例积分导数(Proportional Derivative-Fractional Order Proportional-Integral Derivative,PD-FOPID)控制... 针对麦克纳姆轮农业机器人在智能大棚中的路径跟踪问题,建立了运动学模型和动力学模型,设计了一种新型的双环比例微分-分数阶比例积分导数(Proportional Derivative-Fractional Order Proportional-Integral Derivative,PD-FOPID)控制器对全局路径进行动态跟踪控制。对于控制器参数多且整定困难的问题,首先采用帐篷映射初始化种群策略、精英主义记忆策略、动态余弦权重策略和柯西—高斯变异策略对原始野马算法进行改进,然后利用略改进野马算法(Improved Wild Horse Optimizer,IWHO)对控制器最优增益参数优化。实验结果表明:所开发的算法在探索和开发阶段方面性能优异,且PD-FOPID控制器在整定工作中表现突出。路径跟踪仿真证明,设计的双环PD-FOPID控制器比FOPID控制器更具显著的优势,能够避免动态误差累积,快速响应调整到规划路径,在提高农业大棚机器人路径跟踪控制质量方面具有巨大的潜力。 展开更多
关键词 麦克纳姆轮农业机器人 路径跟踪 运动学模型 动力学模型 新型双环控制器 改进野马算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部