Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling w...Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water.展开更多
Hydroquinone(HQ)poses immeasurable risk to human health and the natural environment on the grounds of high toxicity of organic phenolic compounds.Herein,an innovative electrochemical sensor based on two-dimensional ni...Hydroquinone(HQ)poses immeasurable risk to human health and the natural environment on the grounds of high toxicity of organic phenolic compounds.Herein,an innovative electrochemical sensor based on two-dimensional nickel molybdate nanowires(NiMoO_(4)NWs)is constructed for the ultra-sensitive determination of HQ,which can provide useful reference for the human health and environment protection.Two-dimensional NiMoO_(4)NWs are prepared successfully through a facile hydrothermal reaction and annealing process.The obtained two-dimensional NiMoO_(4)NWs are characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution TEM(HRTEM),energy-dispersive X-ray spectroscopy(EDS)mapping and X-ray photoelectron spectroscopy(XPS).The accurate contents of Ni and Mo have been characterized by inductively coupled plasma atomic emission spectroscopy(ICP-AES),confirming that the lower content of the nickel in NiMoO_(4)NWs possesses the higher catalytic activity of HQ.Under the optimized conditions,the constructed HQ sensor exhibits satisfactory electrocatalytic activity with a low detection limit of 0.0355μmol/L(S/N=3),a wide linear range of 0.05-4600μmol/L and sensitivity of 170.064μA/(mmol cm^(2)).The sensor has been successfully applied to the detection of HQ in rainwater,tap water,domestic sewage and drinking water samples with satisfactory recovery.At the same time,this sensor has excellent reproducibility,selectivity,and stability.The constructed sensor has potential practical application value and broad application prospect in human health and environmental monitoring.展开更多
A field experiment was carried out in a coastal savannah agro-ecological zone of Ghana to assess the dynamics of stored soil water and actual evapotranspiration (AET) of three maize genotypes (Obatanpa, Mamaba, and Go...A field experiment was carried out in a coastal savannah agro-ecological zone of Ghana to assess the dynamics of stored soil water and actual evapotranspiration (AET) of three maize genotypes (Obatanpa, Mamaba, and Golden Crystal) grown under rainfed conditions. Access tubes were installed to a depth of 120 cm for soil water content monitoring using a neutron probe meter. The soil water balance model of plant root zone was used to estimate AET at different crop growth stages. On average, the rate of AET for Obatanpa, Mamaba, and Golden Crystal maize genotypes were estimated as 4.32, 4.46, and 3.72 mm·day–1, respectively, for the major cropping season as against corresponding values of 3.88, 4.00 and 3.72 mm day–1 for the minor cropping season. Mamaba had higher values of AET from 42 DAE (days after emergence) to 84 DAE during the minor cropping season while it had low AET values during the major cropping season. The positive balance in stored soil water in the root zone of Obatanpa was the highest from 42 DAE to 84 DAE followed by Mamaba and Golden Crystal during the major cropping season. Mamaba, on the other hand, had the highest AET from 70 DAE to 84 DAE. Obatanpa used 55.6% of stored soil water for AET, which was the highest among the maize genotypes during the major cropping season. Golden Crystal and Mamaba followed with 53.3% and 51.5%. For the minor cropping season, 48.5% of stored soil water was used by Mamaba for AET, followed by Obatanpa, (46.4%) and Golden Crystal (43.2%). A strong positive significant (p ≤ 0.05) linear correlation existed between AET and precipitation with the coefficient of determination (R2) being 69.2 for Obatanpa, 88.5 for Mamaba and 82.8 for Golden Crystal for the major cropping season. Higher R2 values (98.0, for Obatanpa, 94.1 for Mamaba and 98.9 for Golden Crystal) were, however, obtained for the minor cropping season. Additionally, a strong linear relationship was found between AET and precipitation, suggesting the need to formulate strategies for enhancing effective use of precipitation in sustained rainfed maize production.展开更多
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents...Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.展开更多
AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively u...AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively used to measure cardiovascular hemodynamics, EVLWIp and EVLWIa via an arterial catheter placed in each patient within 48 h of meeting the criteria for severe sepsis from a medical intensive care unit(ICU) at a university affiliated hospital. Survival was the single dependent variable. In order to examine and compare the predictive power of EVLWIp, EVLWIa and other clinically significant factors in predicting the inhospital survival status of severe sepsis patients in the medical ICU, a receiver operating characteristic(ROC) curve method to analyze the significant variables and the area under the ROC curve(AUC) of the variables, P value and 95%CI were calculated.RESULTS: In total, 33 patients were studied. In the ROC curve method analyses, EVLWIp(the AUC: 0.849; P = 0.001, 95%CI: 0.72-0.98) was as predictive for inhospital survival rate as variables with EVLWIa(AUC, 0.829; P = 0.001, 95%CI: 0.68-0.98). The proportion of patients surviving with a low EVLW(EVLWI < 10 m L/kg) was better than that of patients with a higher EVLW, whether indexed by actual(HR = 0.2; P = 0.0002, 95%CI: 0.06-0.42) or predicted body weight(HR = 0.13; P < 0.0001, 95%CI: 0.05-0.35) during their hospital stay with the Kaplan-Meier method(76% vs 12.5%, respectively).CONCLUSION: This investigation proposed that EVLWIp is as good a predictor as EVLWIa to predict inhospital survival rate among severe sepsis patients in the medical ICU.展开更多
文摘Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water.
基金supported by the National Natural Science Foundation of China (21705103)the Applied Basic Research Project of Shanxi Province (202103021224251)+2 种基金Scientific and Technological Innovation Projects in Shanxi Universities (2019L0460)the Graduate Education Innovation Project of Shanxi Province (2021Y485)the 1331 Engineering of Shanxi Province
文摘Hydroquinone(HQ)poses immeasurable risk to human health and the natural environment on the grounds of high toxicity of organic phenolic compounds.Herein,an innovative electrochemical sensor based on two-dimensional nickel molybdate nanowires(NiMoO_(4)NWs)is constructed for the ultra-sensitive determination of HQ,which can provide useful reference for the human health and environment protection.Two-dimensional NiMoO_(4)NWs are prepared successfully through a facile hydrothermal reaction and annealing process.The obtained two-dimensional NiMoO_(4)NWs are characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution TEM(HRTEM),energy-dispersive X-ray spectroscopy(EDS)mapping and X-ray photoelectron spectroscopy(XPS).The accurate contents of Ni and Mo have been characterized by inductively coupled plasma atomic emission spectroscopy(ICP-AES),confirming that the lower content of the nickel in NiMoO_(4)NWs possesses the higher catalytic activity of HQ.Under the optimized conditions,the constructed HQ sensor exhibits satisfactory electrocatalytic activity with a low detection limit of 0.0355μmol/L(S/N=3),a wide linear range of 0.05-4600μmol/L and sensitivity of 170.064μA/(mmol cm^(2)).The sensor has been successfully applied to the detection of HQ in rainwater,tap water,domestic sewage and drinking water samples with satisfactory recovery.At the same time,this sensor has excellent reproducibility,selectivity,and stability.The constructed sensor has potential practical application value and broad application prospect in human health and environmental monitoring.
文摘A field experiment was carried out in a coastal savannah agro-ecological zone of Ghana to assess the dynamics of stored soil water and actual evapotranspiration (AET) of three maize genotypes (Obatanpa, Mamaba, and Golden Crystal) grown under rainfed conditions. Access tubes were installed to a depth of 120 cm for soil water content monitoring using a neutron probe meter. The soil water balance model of plant root zone was used to estimate AET at different crop growth stages. On average, the rate of AET for Obatanpa, Mamaba, and Golden Crystal maize genotypes were estimated as 4.32, 4.46, and 3.72 mm·day–1, respectively, for the major cropping season as against corresponding values of 3.88, 4.00 and 3.72 mm day–1 for the minor cropping season. Mamaba had higher values of AET from 42 DAE (days after emergence) to 84 DAE during the minor cropping season while it had low AET values during the major cropping season. The positive balance in stored soil water in the root zone of Obatanpa was the highest from 42 DAE to 84 DAE followed by Mamaba and Golden Crystal during the major cropping season. Mamaba, on the other hand, had the highest AET from 70 DAE to 84 DAE. Obatanpa used 55.6% of stored soil water for AET, which was the highest among the maize genotypes during the major cropping season. Golden Crystal and Mamaba followed with 53.3% and 51.5%. For the minor cropping season, 48.5% of stored soil water was used by Mamaba for AET, followed by Obatanpa, (46.4%) and Golden Crystal (43.2%). A strong positive significant (p ≤ 0.05) linear correlation existed between AET and precipitation with the coefficient of determination (R2) being 69.2 for Obatanpa, 88.5 for Mamaba and 82.8 for Golden Crystal for the major cropping season. Higher R2 values (98.0, for Obatanpa, 94.1 for Mamaba and 98.9 for Golden Crystal) were, however, obtained for the minor cropping season. Additionally, a strong linear relationship was found between AET and precipitation, suggesting the need to formulate strategies for enhancing effective use of precipitation in sustained rainfed maize production.
基金funded by the Global Change Research Program of China (2010CB951401)the National Natural Science Foundation of China (41030638, 41121001, 41030527,41130641,and 41201025)the One Hundred Talents Program of the Chinese Academy of Sciences
文摘Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.
基金Supported by Grants from Taiwan National Science Council,No.NSC-100-2314-B-182A-054Chang Gung Memorial Hospital,Nos.CMRPG3B0831,CMRPG3B0832 and CMRPG3A0562
文摘AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively used to measure cardiovascular hemodynamics, EVLWIp and EVLWIa via an arterial catheter placed in each patient within 48 h of meeting the criteria for severe sepsis from a medical intensive care unit(ICU) at a university affiliated hospital. Survival was the single dependent variable. In order to examine and compare the predictive power of EVLWIp, EVLWIa and other clinically significant factors in predicting the inhospital survival status of severe sepsis patients in the medical ICU, a receiver operating characteristic(ROC) curve method to analyze the significant variables and the area under the ROC curve(AUC) of the variables, P value and 95%CI were calculated.RESULTS: In total, 33 patients were studied. In the ROC curve method analyses, EVLWIp(the AUC: 0.849; P = 0.001, 95%CI: 0.72-0.98) was as predictive for inhospital survival rate as variables with EVLWIa(AUC, 0.829; P = 0.001, 95%CI: 0.68-0.98). The proportion of patients surviving with a low EVLW(EVLWI < 10 m L/kg) was better than that of patients with a higher EVLW, whether indexed by actual(HR = 0.2; P = 0.0002, 95%CI: 0.06-0.42) or predicted body weight(HR = 0.13; P < 0.0001, 95%CI: 0.05-0.35) during their hospital stay with the Kaplan-Meier method(76% vs 12.5%, respectively).CONCLUSION: This investigation proposed that EVLWIp is as good a predictor as EVLWIa to predict inhospital survival rate among severe sepsis patients in the medical ICU.