The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and ...The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.展开更多
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di...The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.展开更多
文摘The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.
文摘The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.