DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens...The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.展开更多
The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getti...The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.展开更多
This paper investigates the effect of cutter clearance angle on variation of depth of cut and cutting process with an actuated disc cutting(ADC).ADC is a cyclic cutting method with two main characteristics:(i)a disk-s...This paper investigates the effect of cutter clearance angle on variation of depth of cut and cutting process with an actuated disc cutting(ADC).ADC is a cyclic cutting method with two main characteristics:(i)a disk-shape cutter is used to attack the rock in an undercutting mechanism;and(ii)the cutter is dynamically actuated as it is moved across the rock.Hence,the cutting process of such system is periodic,each recurrence known as actuation cycle.The first ADC model,developed in 2016,represented an idealization of the technology with a flat disc cutter,where no clearance angle was considered.The evolution of the contact between the disc and the rock was,therefore,computed only on horizontal x-y plane,ignoring the effect of normal component of the force acting on cartridge.This article reports on a study that incorporates the cutter inclination angle in derivation of cutter/rock interface laws.It extends the proposed kinematic and geometry based model to take into account the variable depth of cut in estimating the forces associated with cutting in one actuation cycle.Experiments were conducted using Wobble to test the predictions of the improved model at various operating conditions.The model predictions are matched with the experimental results and effects of various factors are analysed.展开更多
Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. How...Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.展开更多
This paper considers the stable coordination problem of two vehicles equipping with internal moving mass actuators.The coordinating and stabilizing control are derived by energy shaping. The proposed method is physica...This paper considers the stable coordination problem of two vehicles equipping with internal moving mass actuators.The coordinating and stabilizing control are derived by energy shaping. The proposed method is physically motivated and avoids cancelation or domination of nonlinearities.展开更多
We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length sca...We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam,and smaller beam thickness displays stronger size effect and hence yields smaller deffection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter,the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.展开更多
Fixed-time control of traffic signals pursues the regulation of phases based on historical data of traffic demand, in this way, neglecting of the random arrival rates of traffic flow on different intersection streams ...Fixed-time control of traffic signals pursues the regulation of phases based on historical data of traffic demand, in this way, neglecting of the random arrival rates of traffic flow on different intersection streams causes increasing of the stops and delays and fuel consumption at the same time. Coordinated semi-actuated control due to ability to respond traffic demands on both main and secondary directions, based on road detector registration saves the coordinated features, serving the unused time to the main road, while the secondary clears early. In this paper, the authors analyzed and explained comparatively the results of LOS (level of service) parameters of the current state of control (fixed-time) with the proposed control (semi-actuated coordinated) of the artery of length 2,348 km consisted of four signalized T intersections. Highway Capacity Manual and Synchro/Sim Traffic software are used for analysis and optimization of parameters in this paper.展开更多
Traffic-actuated signal employs relatively complex control logic to regulate traffic flow. Introduction of control variables into the traffic-actuated system contributes to system operational flexibility and complexit...Traffic-actuated signal employs relatively complex control logic to regulate traffic flow. Introduction of control variables into the traffic-actuated system contributes to system operational flexibility and complexity, and also complicates the system with uncertainties. The paper proposes two tentative methods to optimize the actuated signal parameters: basic requirements of controller parameters and analytical model, and macroscopic computer simulation. It is concluded that when the actuated signal operates within the volume/capacity range of 0.4 to 0.6, it will create the most significant benefits; the research suggests that minimum green time in the main street shall be set long enough to meet the required demand, preferably at the 60% of the main street capacity. In order to ensure less control delay in a semi-actuated intersection, relatively small values of vehicle extension (e.g., 2.5 s) and maximum green time are recommended to be assigned to the less important street.展开更多
Professor Cheryl Hamilton of American Tarrant County divided speeches into two types: One is informative speeches, and the other is persuasive speeches. It is obvious that the speech to actuate should be more inspir...Professor Cheryl Hamilton of American Tarrant County divided speeches into two types: One is informative speeches, and the other is persuasive speeches. It is obvious that the speech to actuate should be more inspired and motive than the speech to convince. So the language of the speech to actuate should have some special features. Personal pronoun is one of the basic elements of language. It is widely used in our daily speaking, and for a speaker, it is also an effective way to control the emotion of listeners. Different personal pronouns have different effects in a speech, and this thesis has analyzed the effects of personal pronouns in the speech to actuate respectively with the examples of “I Have a Dream” made by Martin Luther King and “My Education, My Future” made by Barack Hussein Obama Jr., the president of America. From the analysis, we can see the concrete role every pronoun played in the speeches of different styles, and how it impacts the success of a speech. Such an analysis and probe leads to a better understanding on the art of English speaking, which can help the learners of English make these skills in their charge.展开更多
The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence o...The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence of deadlock zone and the small damp of the pneumatic oscillating cylinder, it is likely to result in overshoot, and there is also certain steady-state error, so online modifying of proportion-integration-differentiation (PID) parameters is needed so as to achieve better control performance. Meanwhile considering the stability demand for long-term run, a fuzzy adaptive PID controller is designed. The result of hardware-inloop (HIL) test and real-time control experiment shows that the adaptive PID controller has desirable serfadaptability and robustness to external disturbance and to change of system parameters, and its control per- fonnance is better than that of traditional PID controllers.展开更多
Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,the...Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,they cannot adequately support the huge axial downward forces that FSW generates.Available parallel mechanism architectures,particularly redundantly actuated architectures for FSW,are still very limited.In this paper,a redundantly actuated 2 UPR-2 RPU parallel robot for FSW is proposed,where U denotes a universal joint,R denotes a revolute joint and P denotes a prismatic pair.First,its semi-symmetric structure is described.Next,inverse kinematics analysis involving an analytical representation of rotational axes is implemented.Velocity analysis is also conducted,which leads to the formation of a Jacobian matrix.Sensitivity performance is evaluated utilizing level set and convex optimization methods,where the local sensitivity indices are unit consistent,coordinate free,and of definite physical significance.Furthermore,global and hierarchical sensitivity indices are proposed for the design process.Finally,dimension synthesis is conducted based on the sensitivity indices and the optimal link parameters of the parallel robot are obtained.In summary,this paper proposes a dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices.展开更多
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金The financial support from the National Natural Science Foundation of China (32201179)Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130)+1 种基金the Fundamental Research Funds for the Central Universities (N2319005)Ningbo Science and Technology Major Project (2021Z027) is gratefully acknowledged。
文摘The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
基金Supported by National Natural Science Foundation of China(Grant No.51875499).
文摘The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.
基金Minerals Research Institute of Western Australia, Mining3 and CSIRO for funding this work
文摘This paper investigates the effect of cutter clearance angle on variation of depth of cut and cutting process with an actuated disc cutting(ADC).ADC is a cyclic cutting method with two main characteristics:(i)a disk-shape cutter is used to attack the rock in an undercutting mechanism;and(ii)the cutter is dynamically actuated as it is moved across the rock.Hence,the cutting process of such system is periodic,each recurrence known as actuation cycle.The first ADC model,developed in 2016,represented an idealization of the technology with a flat disc cutter,where no clearance angle was considered.The evolution of the contact between the disc and the rock was,therefore,computed only on horizontal x-y plane,ignoring the effect of normal component of the force acting on cartridge.This article reports on a study that incorporates the cutter inclination angle in derivation of cutter/rock interface laws.It extends the proposed kinematic and geometry based model to take into account the variable depth of cut in estimating the forces associated with cutting in one actuation cycle.Experiments were conducted using Wobble to test the predictions of the improved model at various operating conditions.The model predictions are matched with the experimental results and effects of various factors are analysed.
基金Supported by Joint Funds of National Natural Science Foundation of China(Grant No.U1613201)Shenzhen Research Funds(JCYJ20170413104438332)
文摘Capture is a key component for on?orbit service and space debris clean. The current research of capture on?orbit focuses on using special capture devices or full?actuated space arms to capture cooperative targets. However, the structures of current capture devices are complex, and both space debris and abandoned spacecraft are non?cooperative targets. To capture non?cooperative targets in space, a lightweight, less driven under?actuated robotic hand is proposed in this paper, which composed by tendon?pulley transmission and double?stage mechanisms, and always driven by only one motor in process of closing finger. Because of the expandability, general grasping model is constructed. The equivalent joint driving forces and general grasping force are analyzed based on the model and the principle of virtual work. Which reveal the relationship among tendon driving force, joint driving forces and grasping force. In order to configure the number of knuckles of finger, a new analysis method which takes the maximum grasping space into account, is proposed. Supposing the maximum grasped object is an envelope circle with diameter of 2.5m. In the condition, a finger grasping maximum envelope circle with different knuckles is modeled. And the finger lengths with corresponding knuckles are calculated out. The finger length which consists of three knuckles is the shortest among under?actuated fingers consists of not more than five knuckles. Finally, the principle prototype and prototype robotic hand which consists of two dingers are designed and assembled. Experiments indicate that the under?actuated robotic hand can satisfy the grasp requirements.
基金supported by the National Natural Science Foundation of China(11072002,10832006 )
文摘This paper considers the stable coordination problem of two vehicles equipping with internal moving mass actuators.The coordinating and stabilizing control are derived by energy shaping. The proposed method is physically motivated and avoids cancelation or domination of nonlinearities.
文摘We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam,and smaller beam thickness displays stronger size effect and hence yields smaller deffection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter,the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.
文摘Fixed-time control of traffic signals pursues the regulation of phases based on historical data of traffic demand, in this way, neglecting of the random arrival rates of traffic flow on different intersection streams causes increasing of the stops and delays and fuel consumption at the same time. Coordinated semi-actuated control due to ability to respond traffic demands on both main and secondary directions, based on road detector registration saves the coordinated features, serving the unused time to the main road, while the secondary clears early. In this paper, the authors analyzed and explained comparatively the results of LOS (level of service) parameters of the current state of control (fixed-time) with the proposed control (semi-actuated coordinated) of the artery of length 2,348 km consisted of four signalized T intersections. Highway Capacity Manual and Synchro/Sim Traffic software are used for analysis and optimization of parameters in this paper.
基金supported by the Fundamental Research Funds for the Central Universities (SWJTU09CX042)National Natural Science Foun-dation of China (NSFC-50978222)
文摘Traffic-actuated signal employs relatively complex control logic to regulate traffic flow. Introduction of control variables into the traffic-actuated system contributes to system operational flexibility and complexity, and also complicates the system with uncertainties. The paper proposes two tentative methods to optimize the actuated signal parameters: basic requirements of controller parameters and analytical model, and macroscopic computer simulation. It is concluded that when the actuated signal operates within the volume/capacity range of 0.4 to 0.6, it will create the most significant benefits; the research suggests that minimum green time in the main street shall be set long enough to meet the required demand, preferably at the 60% of the main street capacity. In order to ensure less control delay in a semi-actuated intersection, relatively small values of vehicle extension (e.g., 2.5 s) and maximum green time are recommended to be assigned to the less important street.
文摘Professor Cheryl Hamilton of American Tarrant County divided speeches into two types: One is informative speeches, and the other is persuasive speeches. It is obvious that the speech to actuate should be more inspired and motive than the speech to convince. So the language of the speech to actuate should have some special features. Personal pronoun is one of the basic elements of language. It is widely used in our daily speaking, and for a speaker, it is also an effective way to control the emotion of listeners. Different personal pronouns have different effects in a speech, and this thesis has analyzed the effects of personal pronouns in the speech to actuate respectively with the examples of “I Have a Dream” made by Martin Luther King and “My Education, My Future” made by Barack Hussein Obama Jr., the president of America. From the analysis, we can see the concrete role every pronoun played in the speeches of different styles, and how it impacts the success of a speech. Such an analysis and probe leads to a better understanding on the art of English speaking, which can help the learners of English make these skills in their charge.
基金Supported by Japanese SMC Corporation with contract (No. 05-07)
文摘The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence of deadlock zone and the small damp of the pneumatic oscillating cylinder, it is likely to result in overshoot, and there is also certain steady-state error, so online modifying of proportion-integration-differentiation (PID) parameters is needed so as to achieve better control performance. Meanwhile considering the stability demand for long-term run, a fuzzy adaptive PID controller is designed. The result of hardware-inloop (HIL) test and real-time control experiment shows that the adaptive PID controller has desirable serfadaptability and robustness to external disturbance and to change of system parameters, and its control per- fonnance is better than that of traditional PID controllers.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1713202,51525504).
文摘Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,they cannot adequately support the huge axial downward forces that FSW generates.Available parallel mechanism architectures,particularly redundantly actuated architectures for FSW,are still very limited.In this paper,a redundantly actuated 2 UPR-2 RPU parallel robot for FSW is proposed,where U denotes a universal joint,R denotes a revolute joint and P denotes a prismatic pair.First,its semi-symmetric structure is described.Next,inverse kinematics analysis involving an analytical representation of rotational axes is implemented.Velocity analysis is also conducted,which leads to the formation of a Jacobian matrix.Sensitivity performance is evaluated utilizing level set and convex optimization methods,where the local sensitivity indices are unit consistent,coordinate free,and of definite physical significance.Furthermore,global and hierarchical sensitivity indices are proposed for the design process.Finally,dimension synthesis is conducted based on the sensitivity indices and the optimal link parameters of the parallel robot are obtained.In summary,this paper proposes a dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices.