期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
1
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
Adaptive Fixed-Time Control of Nonlinear MASs With Actuator Faults 被引量:6
2
作者 Hongru Ren Hui Ma +1 位作者 Hongyi Li Zhenyou Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1252-1262,共11页
The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function... The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function neural networks are used.In addition,the first order sliding mode differentiator is utilized to solve the“explosion of complexity”problem,and a filter error compensation method is proposed to ensure the convergence of filter error in fixed time.With the help of the Nussbaum function,the actuator failure compensation mechanism is constructed.By designing the adaptive fixed-time controller,all signals in MASs are bounded,and the consensus errors between the leader and all followers converge to a small area of origin.Finally,the effectiveness of the proposed control method is verified by simulation examples. 展开更多
关键词 actuator faults adaptive fixed-time control multiagent systems(MASs) Nussbaum function
下载PDF
A Novel Robust Attitude Control for Quadrotor Aircraft Subject to Actuator Faults and Wind Gusts 被引量:22
3
作者 Yuying Guo Bin Jiang Youmin Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期292-300,共9页
A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quad... A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quadrotor taking into account aerodynamical effects induced by lateral wind and actuator faults is considered using the Newton-Euler approach. Then,based on active disturbance rejection control(ADRC), the fault tolerant controller is proposed to recover faulty system and reject perturbations. The developed controller takes wind gusts,actuator faults and measurement noises as total perturbations which are estimated by improved extended state observer(ESO)and compensated by nonlinear feedback control law. So, the developed robust fault tolerant controller can successfully accomplish the tracking of the desired output values. Finally, some simulation studies are given to illustrate the effectiveness of fault recovery of the proposed scheme and also its ability to attenuate external disturbances that are introduced from environmental causes such as wind gusts and measurement noises. 展开更多
关键词 Active disturbance rejection control(ADRC) attitude control actuator faults disturbances rejection quadrotor aircraft
下载PDF
Human-in-the-Loop Consensus Control for Nonlinear Multi-Agent Systems With Actuator Faults 被引量:7
4
作者 Guohuai Lin Hongyi Li +2 位作者 Hui Ma Deyin Yao Renquan Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期111-122,共12页
This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator contro... This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory.Moreover,the leader’s input is nonzero and not available to all followers.By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults,respectively,the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed.It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally,simulation results are presented for verifying the effectiveness of the proposed control method. 展开更多
关键词 actuator faults distributed control human-in-the-loop neighborhood observer nonlinear multi-agent systems(MASs)
下载PDF
Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters 被引量:4
5
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期964-971,共8页
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co... Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme. 展开更多
关键词 Space robot actuator faults Uncertain parameters Effectiveness factor Fault-tolerant control
下载PDF
Observer-based adaptive control of uncertain time-delay switched systems with stuck actuator faults
6
作者 Limin WANG Cheng SHAO 《控制理论与应用(英文版)》 EI 2009年第2期219-223,共5页
This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, mul... This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient. 展开更多
关键词 Observer-based adaptive control Tuck actuator faults DELAY-INDEPENDENT Uncertain time-delay switched systems
下载PDF
Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults 被引量:13
7
作者 Ping LI Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第3期248-256,共9页
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adap... A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach. 展开更多
关键词 Adaptive control Fuzzy system BACKSTEPPING Uncertain nonlinear system actuator fault
下载PDF
A novel three-inflection-point sliding mode control framework for forward-tilting morphing aerospace vehicle with performance constraints and actuator faults
8
作者 Xinkai LI Lei DOU +1 位作者 Hongli ZHANG Yue MENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期293-310,共18页
A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morp... A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morphing aerospace vehicle with time-varying actuator faults.To accurately estimate the loss degree of actuator faults,an immersion and invariance observer based on the predefined time dynamic scale factor is designed to estimate and compensate it.A composite dynamic sliding mode surface is designed using a three-inflection-point hyperbolic function,and a novel three-inflection-point sliding mode control framework is proposed.The convergent domain of the sliding manifold is adjusted by parameters,and the system error convergence is controllable.A transfer function is designed to eliminate the sensitivity of the three-inflection-point hyperbolic sliding mode to the unknown initial state,and combined with the barrier Lyapunov function,and the performance constraint of the system is realized.The global asymptotic stability of the system is demonstrated using a strict mathematical proof.The effectiveness and superiority of the proposed control scheme are proven by simulation experiments. 展开更多
关键词 Morphing aerospace vehicle actuator faults Immersion and invariance Three-inflection-point sliding mode control Prescribed performance control
原文传递
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
9
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control actuator faults Uncertain nonlinear system
下载PDF
Distributed fault diagnosis observer for multi-agent system against actuator and sensor faults 被引量:1
10
作者 YE Zhengyu JIANG Bin +2 位作者 CHENG Yuehua YU Ziquan YANG Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期766-774,共9页
Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method f... Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations. 展开更多
关键词 multi-agent system(MAS) sensor fault actuator fault unknown input observer sliding mode fault diagnosis
下载PDF
Actuator and sensor fault isolation in a class of nonlinear dynamical systems
11
作者 Hamed Tirandaz Christodoulos Keliris Marios M.Polycarpou 《Journal of Automation and Intelligence》 2024年第2期57-72,共16页
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol... Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example. 展开更多
关键词 actuator and sensor fault isolation Adaptive approximation Observer-based fault diagnosis Reasoning-based decision logic
下载PDF
Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults 被引量:9
12
作者 Liming FAN Hai HUANG Kaixing ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3380-3394,共15页
In this paper,the satellite attitude control system subject to parametric perturbations,external disturbances,time-varying input delays,actuator faults and saturation is studied.In order to make the controller archite... In this paper,the satellite attitude control system subject to parametric perturbations,external disturbances,time-varying input delays,actuator faults and saturation is studied.In order to make the controller architecture simple and practical,the closed-loop system is transformed into a disturbance-free nominal system and an equivalent disturbance firstly.The equivalent disturbance represents all above uncertainties and actuator failures of the original system.Then a robust controller is proposed in a simple composition consisting of a nominal controller and a robust compensator.The nominal controller is designed for the transformed nominal system.The robust compensator is developed from a second-order filter to restrict the influence of the equivalent disturbance.Stability analysis indicates that both attitude tracking errors and compensator states can converge into the given neighborhood of the origin in finite time.To verify the effectiveness of the proposed control law,numerical simulations are carried out in different cases.Presented results demonstrate that the high-precision attitude tracking control can be achieved by the proposed fault-tolerant control law.Furthermore,multiple system performances including the control accuracy and energy consumption index are fully discussed under a series of compensator parameters. 展开更多
关键词 actuator faults Fault-tolerant systems Input delays Multiple uncertainties Satellite attitude control
原文传递
Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control Design and Parameter Optimization for Hypersonic Vehicles with Actuator Faults 被引量:3
13
作者 Ke Gao Jia Song +1 位作者 Xu Wang Huifeng Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第1期9-23,共15页
The hypersonic vehicle model is characterized by strong coupling,nonlinearity,and acute changes of aerodynamic parameters,which are challenging for control system design.This study investigates a novel compound contro... The hypersonic vehicle model is characterized by strong coupling,nonlinearity,and acute changes of aerodynamic parameters,which are challenging for control system design.This study investigates a novel compound control scheme that combines the advantages of the Fractional-Order Proportional-Integral-Derivative(FOPID)controller and Linear Active Disturbance Rejection Control(LADRC)for reentry flight control of hypersonic vehicles with actuator faults.First,given that the controller has adjustable parameters,the frequency-domain analysis-method-based parameter tuning strategy is utilized for the FOPID controller and LADRC method(FOLADRC).Then,the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed.Finally,the simulation results indicate that the proposed FOLADRC approach has satisfactory performance in terms of rapidity,accuracy,and robustness under the normal operating condition and actuator fault condition. 展开更多
关键词 Active Disturbance Rejection Control(ADRC) Fractional-Order Proportional-Integral-Derivative(FOPID) Linear Extended State Observer(LESO) Near Space Hypersonic Vehicle(NSHV) actuator faults
原文传递
Adaptive Type-2 Fuzzy Sliding Mode Controller for SISO Nonlinear Systems Subject to Actuator Faults 被引量:1
14
作者 Meriem Benbrahim Najib Essounbouli +1 位作者 Abdelaziz Hamzaoui Ammar Betta 《International Journal of Automation and computing》 EI CSCD 2013年第4期335-342,共8页
In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 a... In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example. 展开更多
关键词 Type-2 fuzzy systems fault tolerant control sliding mode control adaptive system actuator faults.
原文传递
Fast Active Fault-Tolerant Control for a Quadrotor UAV Against Multiple Actuator Faults 被引量:1
15
作者 Zhou Xing Jindou Jia +2 位作者 Kexin Guo Wei Jia Xiang Yu 《Guidance, Navigation and Control》 2022年第1期101-116,共16页
This paper proposes a fast adaptive fault estimator-based active fault-tolerant control strategy for a quadrotor UAV against multiple actuator faults.A fast adaptive fault estimation algorithm is designed to estimate ... This paper proposes a fast adaptive fault estimator-based active fault-tolerant control strategy for a quadrotor UAV against multiple actuator faults.A fast adaptive fault estimation algorithm is designed to estimate the unknown actuator fault parameters.By synthesizing the fast adaptive fault estimator with the embedded control law,an active fault-tolerant control mechanism is established to compensate the adverse e®ects of multiple actuator faults.The e®ectiveness of the proposed strategy is validated through both numerical simulations and experimental tests. 展开更多
关键词 Quadrotor UAV actuator faults fast adaptive fault estimator active fault-tolerant control
原文传递
Security control of positive semi-Markovian jump systems with actuator faults
16
作者 Junfeng Zhang Haoyue Yang +1 位作者 Suhuan Zhang Xianglei Jia 《Control Theory and Technology》 EI CSCD 2021年第2期197-210,共14页
Actuator faults usually cause security problem in practice.This paper is concerned with the security control of positive semi-Markovian jump systems with actuator faults.The considered systems are with mode transition... Actuator faults usually cause security problem in practice.This paper is concerned with the security control of positive semi-Markovian jump systems with actuator faults.The considered systems are with mode transition-dependent sojourn-time distributions,which may also lead to actuator faults.First,the time-varying and bounded transition rate that satisfies the mode transition-dependent sojourn-time distribution is considered.Then,a stochastic co-positive Lyapunov function is constructed.Using matrix decomposition technique,a set of state-feedback controllers for positive semi-Markovian jump systems with actuator faults are designed in terms of linear programming.Under the designed controllers,stochastic stabilization of the systems with actuator faults are achieved and the security of the systems can be guaranteed.Furthermore,the proposed results are extended to positive semi-Markovian jump systems with interval and polytopic uncertainties.By virtue of a segmentation technique of the transition rates,a less conservative security control design is also proposed.Finally,numerical examples are provided to demonstrate the validity of the presented results. 展开更多
关键词 Positive semi-Markovian jump systems Sojourn-time distribution actuator faults Linear programming
原文传递
Fault-Tolerant Control for a Class of Uncertain Systems with Actuator Faults 被引量:4
17
作者 叶思隽 张友民 +1 位作者 王新民 姜斌 《Tsinghua Science and Technology》 SCIE EI CAS 2010年第2期174-183,共10页
The problem of fault-tolerant controller design for a class of polytopic uncertain systems with actuator faults is studied in this paper. The actuator faults are presented as a more general and practical continuous fa... The problem of fault-tolerant controller design for a class of polytopic uncertain systems with actuator faults is studied in this paper. The actuator faults are presented as a more general and practical continuous fault model. Based on the affine quadratic stability (AQS), the stability of the polytopic uncertain system is replaced by the stability at all corners of the polytope. For a wide range of problems including H∞ and mixed H2/H∞ controller design, sufficient conditions are derived to guarantee the robust stability and performance of the closed-loop system in both normal and fault cases. In the framework of the linear matrix inequality (LMI) method, an iterative algorithm is developed to reduce conservativeness of the design procedure. The effectiveness of the proposed design is shown through a flight control example. 展开更多
关键词 fault-tolerant control (FTC) affine quadratic stability (AQS) continuous actuator fault multi-objective synthesis linear matrix inequality (LMI)
原文传递
Static-feedback guaranteed cost control for linear systems with outage and loss of effectiveness actuator faults
18
作者 Chun-Hua Xie Zhe Li Yanli Zhou 《Journal of Control and Decision》 EI 2022年第4期407-419,共13页
This paper investigates the static-feedback guaranteed cost control problem for linear systems with actuator faults including outage and loss of effectiveness.Under the actuator redundancy condition,theoretical analys... This paper investigates the static-feedback guaranteed cost control problem for linear systems with actuator faults including outage and loss of effectiveness.Under the actuator redundancy condition,theoretical analysis shows that a static-feedback guaranteed cost controller can always be well designed to ensure that the resulting closed-loop system is stable with desirable quadratic performance.In particular,the feedback gain can be determined through the solution of a modified algebraic Riccati equation.Furthermore,extension to the system with uncertainties is further studied.Compared with the dynamic feedback controller,the static-feedback controller consists only of logical gates/modules and it does not require any memory element,and hence it is simplest in a design perspective.Different from the existing results,the severe and timevarying actuator outage faults can be handled very well by the proposed control strategy.Finally,simulation on a linearised reduced-order aircraft system is provided for verifying the theoretical results. 展开更多
关键词 Static-feedback guaranteed cost control linear systems actuator outage faults algebraic Riccati equation
原文传递
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
19
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Distributed Fault Estimation for Nonlinear Systems With Sensor Saturation and Deception Attacks Using Stochastic Communication Protocols
20
作者 Weiwei Sun Xinci Gao +1 位作者 Lusong Ding Xiangyu Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1865-1876,共12页
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati... This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm. 展开更多
关键词 actuator fault deception attacks distributed estimation sensor saturation stochastic communication protocol(SCP).
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部