We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchy...We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-I, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-KB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.展开更多
Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used...Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used MSCs toalleviate COVID-19-associated acute lung injury and cytokine storm, reportedpromising results. However, the evidence came from a case report, case series,and clinical trials with a limited number of participants. Therefore, more studiesare needed to get robust proof of MSC beneficial effects.展开更多
Rhodioloside has been shown to protect cells from hypoxia injury,and bone marrow mesenchymal stem cells have a good effect on tissue repair.To study the effects of rhodioloside and bone marrow mesenchymal stem cells o...Rhodioloside has been shown to protect cells from hypoxia injury,and bone marrow mesenchymal stem cells have a good effect on tissue repair.To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury,a rat model of spinal cord injury was established using the Infinite Horizons method.After establishing the model,the rats were randomly divided into five groups.Rats in the control group were intragastrically injected with phosphate buffered saline(PBS)(5μL).PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm.Rats in the rhodioloside group were intragastrically injected with rhodioloside(5 g/kg)and intramuscularly injected with PBS.Rats in the mesenchymal stem cell(MSC)group were intramuscularly injected with PBS and intramuscularly with MSCs(8×10^6/mL in a 50-μL cell suspension).Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs.Rats in the rhodioloside+Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside.One week after treatment,exercise recovery was evaluated with a modified combined behavioral score scale.Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue.Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord.Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord.The results showed that:(1)compared with the other groups,the rhodioloside+Ad-HIF-MSC group exhibited the highest combined behavioral score(P<0.05),the most recovered tissue,and the greatest number of neurons,as indicated by Pischingert’s methylene blue staining.(2)Compared with the PBS group,HIF-1 protein expression was greater in the rhodioloside group(P<0.05).(3)Compared with the Ad-HIF-MSC group,Sry mRNA levels were higher in the rhodioloside+Ad-HIF-MSC group(P<0.05).These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue.This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine,China(approval No.2015KYLL029)in June 2015.展开更多
Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury(AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. A...Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury(AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. After AKI, inflammation, oxidative stress and excessive deposition of extracellular matrix are the molecular events that ultimately cause the end-stage renal disease. Despite numerous improvement of supportive therapy, the mortality and morbidity among patients remain high. Therefore, exploring novel therapeutic options to treat AKI is mandatory. Numerous evidence in animal models has demonstrated the capability of mesenchymal stem cells(MSCs) to restore kidney function after induced kidney injury. After infusion, MSCs engraft in the injured tissue and release soluble factors and microvesicles that promote cell survival and tissue repairing. Indeed, the main mechanism of action of MSCs in tissue regeneration is the paracrine/endocrine secretion of bioactive molecules. MSCs can be isolated from several tissues, including bone marrow, adipose tissue, and blood cord; pre-treatment procedures to improve MSCs homing and their paracrine function have been also described. This review will focus on the application of cell therapy in AKI and it will summarize preclinical studies in animal models and clinical trials currently ongoing about the use of mesenchymal stem cells after AKI.展开更多
Acute pancreatitis(AP)often leads to a high incidence of cardiac injury,posing significant challenges in the treatment of severe AP and contributing to increased mortality rates.Mesenchymal stem cells(MSCs)release bio...Acute pancreatitis(AP)often leads to a high incidence of cardiac injury,posing significant challenges in the treatment of severe AP and contributing to increased mortality rates.Mesenchymal stem cells(MSCs)release bioactive molecules that participate in various inflammatory diseases.Similarly,extracellular vesicles(EVs)secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation.Recently,the therapeutic potential of MSCs-EVs in various inflammatory diseases,including sepsis and AP,has gained increasing recognition.Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited,several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases.Furthermore,clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases,wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs.Consequently,we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury.This paper aims to discuss this topic.However,additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury,as well as to ascertain their safety and efficacy.展开更多
BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain ...BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain unclear. Low-dose radiation has been shown to promote homing of BMSCs to exposed sites. OBJECTIVE: To investigate the effects of low-dose local radiation to non-injured areas on the ability of human BMSCs to home to the injured mouse spinal cord, as well as recovery of spinal cord injury. DESIGN, TIME AND SE'I-FING: A randomized, controlled, animal experiment was performed at the Central Laboratory, Second Affiliated Hospital of Soochow University between October 2007 and October 2008. MATERIALS: BMSCs were isolated from four adult, human donors. METHODS: Fifty adult, female, Balb/c mice were subjected to adjusted weight-drop impact resulting in complete paraplegia. Three days later, mice were randomly assigned to a radiation + transplantation group (n = 23) and a transplantation group (n = 20). In total, 2 x 106 carboxyfluorescein diacetate succinimidyl ester-labeled BMSCs were injected into each mouse via the caudal vein. Mice in the radiation + transplantation group received 2.5 Gy local X-ray irradiation 2 hours before BMSCs injection. MAIN OUTCOME MEASURES: The homing of BMSCs to injured cord and irradiated skin after transplantation was observed by fluorescence microscope; the structure recovery of injured cord was assessed by magnetic resonance imaging. RESULTS: Compared with the transplantation group, at 24 hours after transplantation, the number of BMSCs was significantly increased in the injured area and the exposed site (P 〈 0.05), and inflammation and edema were significantly alleviated in the injured cord in the radiation + transplantation group. CONCLUSION: Local low-dose radiation has the potential to promote homing of BMSCs and recovery of spinal cord injury, although the radiated region was not injured area.展开更多
Acute kidney injury(AKI)is a significant global health issue with limited current treatment options.This study focused on the mechanism by which exosomes derived from bone marrow mesenchymal stem cells(BMSCs)promote r...Acute kidney injury(AKI)is a significant global health issue with limited current treatment options.This study focused on the mechanism by which exosomes derived from bone marrow mesenchymal stem cells(BMSCs)promote renal tubule regeneration in AKI through the regulation of the PTEN signaling pathway by miR-21.BMSCs were isolated and characterized,and their exosomes were purified.In vitro,renal tubular epithelial cell injury models were established,and the co-culture of exosomes and cells demonstrated enhanced cell proliferation and reduced apoptosis.In vivo,AKI animal models showed improved renal function and histopathological changes after exosome treatment.miR-21 was found to be upregulated in exosomes and recipient cells,targeting PTEN and activating the PI3K/AKT pathway.The signaling network also interacted with other pathways related to renal tubule regeneration.The study highlights the potential of exosome therapy for AKI and provides insights into the underlying molecular mechanisms,although further research is needed to address remaining challenges and translate these findings into clinical applications.展开更多
Background Acute lung injury (ALl) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units. The activation of an inflammatory response and the da...Background Acute lung injury (ALl) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units. The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS. Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury. Here, our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS. Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified. ALl was induced in rats byoleic acid (OA), and MSCs were transplanted intravenously. The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours, 24 hours and 48 hours after OA-injection. Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs. The concentration of tumor necrosis factor-a and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs, whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours, 24 hours and 48 hours after OA-challenge. Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS. Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.展开更多
Objective Mesenchymal stem cells(MSCs) represent a promising population for supporting new clinical concepts in cellular therapy, and they can be reprogrammed into induced pluripotent stem cells(iPSCs) by defined ...Objective Mesenchymal stem cells(MSCs) represent a promising population for supporting new clinical concepts in cellular therapy, and they can be reprogrammed into induced pluripotent stem cells(iPSCs) by defined factors. Methods This method opened up a new era of stem cell research, because the transplantation rejection of iPSCs is the bottleneck of its clinical application, so seeking alternative compounds and animal origin diagnostic reagents to achieve full chemical iPSCs is to be done to solve this problem. Results The application of these iPSCs has largely been associated with well known undesirable effects such as the development of cancers in certain experimental models. This has called for the search and use of reprogramming factors that are safe. Chinese materia medica(CMM) with tonifying kidney function(TKF) offers an alternative source. On the other hand, human umbilical cord mesenchymal stem cells(hUMSCs) are known to be a "young" source of MSCs, hUMSCs transplantation is an attractive approach for acute kidney injury repair. Therefore, In this study, we investigated whether the treatment of CMM with TKF on hUMSCs could enhance the repair in mice model of acute kidney injury after transplantation. Conclusion Our results showed that the treatment of hUMSCs with kidney tonifying CMM increased their multipotency, improved the renal function of mice and enhanced subsequent homing to the injured kidney in an acute kidney injury mice model.展开更多
Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angioge...Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.展开更多
There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progre...There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.展开更多
After a radiological or nuclear event, acute radiation syndrome(ARS) will present complex medical challenges that could involve the treatment of hundreds to thousands of patients. Current medical doctrine is based on ...After a radiological or nuclear event, acute radiation syndrome(ARS) will present complex medical challenges that could involve the treatment of hundreds to thousands of patients. Current medical doctrine is based on limited clinical data and remains inadequate. Efforts to develop medical innovations that address ARS complications are unlikely to be generated by the industry because of market uncertainties specific to this type of injury. A prospective strategy could be the integration of cellular therapy to meet the medical demands of ARS. The most clinically advanced cellular therapy to date is the administration of mesenchymal stem cells(MSCs). Results of currently published investigations describing MSC safety and efficacy in a variety of injury and disease models demonstrate the unique qualities of this reparative cell population in adapting to the specific requirements of the damaged tissue in which the cells integrate. This report puts forward a rationale for the further evaluation of MSC therapy to address the current unmet medical needs of ARS. We propose that the exploration of this novel therapy for the treatment of the multivariate complications of ARS could be of invaluable benefit to military medicine.展开更多
Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation,such as that caused by detonation of nuclear devices and inappropriate medical treatments.Therefore,t...Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation,such as that caused by detonation of nuclear devices and inappropriate medical treatments.Therefore,there is a growing need for medical interventions that facilitate the improved recovery of victims and patients.One promising approach may be cell therapy,which,when appropriately implemented,may facilitate recovery from whole body injuries.This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome,the benefits and limitations of which are under investigation.Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches.展开更多
Coronavirus disease 2019(COVID-19),a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV2),is growing at an exponential rate worldwide.Manifestations of this disease are heterogeneo...Coronavirus disease 2019(COVID-19),a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV2),is growing at an exponential rate worldwide.Manifestations of this disease are heterogeneous;however,advanced cases often exhibit various acute respiratory distress syndrome-like symptoms,systemic inflammatory reactions,coagulopathy,and organ involvements.A common theme in advanced COVID-19 is unrestrained immune activation,classically referred to as a“cytokine storm”,as well as deficiencies in immune regulatory mechanisms such as T regulatory cells.While mesenchymal stem cells(MSCs)themselves are objects of cytokine regulation,they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells,macrophages and neutrophils;and by reducing the activation of T and B cells,dendritic and nature killer cells.Consequently,they have therapeutic potential for treating severe cases of COVID-19.Here we discuss the unique ability of MSCs,to act as a“living antiinflammatory”,which can“rebalance”the cytokine/immune responses to restore equilibrium.We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.展开更多
The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens milli...The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.展开更多
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) orcoronavirus disease 2019 (COVID-19) pandemic has exhausted the health systemsin many countries with thousands cases diagnosed daily. The currently use...The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) orcoronavirus disease 2019 (COVID-19) pandemic has exhausted the health systemsin many countries with thousands cases diagnosed daily. The currently usedtreatment guideline is to manage the common symptoms like fever and cough,but doesn’t target the virus itself or halts serious complications arising from thisviral infection. Currently, SARS-CoV-2 exhibits many genetic modulations whichhave been associated with the appearance of highly contagious strains. Thenumber of critical cases of COVID-19 increases markedly, and many of theinfected people die as a result of respiratory failure and multiple organ dysfunction. The regenerative potential of mesenchymal stem cells (MSCs) has beenextensively studied and confirmed. The impressive immunomodulation and antiinflammatoryactivity of MSCs have been recognized as a golden opportunity forthe treatment of COVID-19 and its associated complications. Moreover, MSCsregenerative and repairing abilities have been corroborated by many studies withpositive outcomes and high recovery rates. Based on that, MSCs infusion could bean effective mechanism in managing and stemming the serious complications andmultiple organ failure associated with COVID-19. In the present review, wediscuss the commonly reported complications of COVID-19 viral infection and theestablished and anticipated role of MSCs in managing these complications.展开更多
Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivo...Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ioniz-ing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung.展开更多
Acute lung injury (ALI) is a common complication of sepsis with characteristics of acute onset, rapid change in the disease and high mortality. Since current clinical treatment can only alleviate the unfavorable condi...Acute lung injury (ALI) is a common complication of sepsis with characteristics of acute onset, rapid change in the disease and high mortality. Since current clinical treatment can only alleviate the unfavorable condition to a certain extent but cure, we urgently need to find an effective treatment. Most scholars believe that sepsis-induced ALI is associated with extensive mitochondrial damage. In recent years, a widely studied pluripotent stem cell that is mesenchymal stem cell has been proved to alleviate and treat sepsis-induced ALI by transporting mitochondria via nanotubes in a microtubule-dependent manner. Research progress in this field will be reviewed in this study.展开更多
Acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are common life-threatening lung diseases associated with acute and severe inflammation.Both have high mortality rates,and despite decades of research...Acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are common life-threatening lung diseases associated with acute and severe inflammation.Both have high mortality rates,and despite decades of research on clinical ALI/ARDS,there are no effective therapeutic strategies.Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury.Recently,studies on the role of extracellular vesicles(EVs)in regulating normal and pathophysiologic cell activities,including inflammation and injury responses,have attracted attention.Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes,which can be used to diagnose and predict the development of ALI/ARDS.EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function,and thereby promote cell proliferation and tissue regeneration.This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation,particularly ALI/ARDS.展开更多
基金funded by the National Natural Science Foundation of China (Establishment of goat models of ischemic injury via corticospinal tract projection tract and action mechanism of MPA1B axon guidance during BMSC migration in the spinal cord), No. 30972153
文摘We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-I, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-KB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.
文摘Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used MSCs toalleviate COVID-19-associated acute lung injury and cytokine storm, reportedpromising results. However, the evidence came from a case report, case series,and clinical trials with a limited number of participants. Therefore, more studiesare needed to get robust proof of MSC beneficial effects.
基金supported by the National High Technology Research and Development Program of China (863 Program), No. 2015CB755400 (to XQH)
文摘Rhodioloside has been shown to protect cells from hypoxia injury,and bone marrow mesenchymal stem cells have a good effect on tissue repair.To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury,a rat model of spinal cord injury was established using the Infinite Horizons method.After establishing the model,the rats were randomly divided into five groups.Rats in the control group were intragastrically injected with phosphate buffered saline(PBS)(5μL).PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm.Rats in the rhodioloside group were intragastrically injected with rhodioloside(5 g/kg)and intramuscularly injected with PBS.Rats in the mesenchymal stem cell(MSC)group were intramuscularly injected with PBS and intramuscularly with MSCs(8×10^6/mL in a 50-μL cell suspension).Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs.Rats in the rhodioloside+Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside.One week after treatment,exercise recovery was evaluated with a modified combined behavioral score scale.Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue.Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord.Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord.The results showed that:(1)compared with the other groups,the rhodioloside+Ad-HIF-MSC group exhibited the highest combined behavioral score(P<0.05),the most recovered tissue,and the greatest number of neurons,as indicated by Pischingert’s methylene blue staining.(2)Compared with the PBS group,HIF-1 protein expression was greater in the rhodioloside group(P<0.05).(3)Compared with the Ad-HIF-MSC group,Sry mRNA levels were higher in the rhodioloside+Ad-HIF-MSC group(P<0.05).These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue.This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine,China(approval No.2015KYLL029)in June 2015.
文摘Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury(AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. After AKI, inflammation, oxidative stress and excessive deposition of extracellular matrix are the molecular events that ultimately cause the end-stage renal disease. Despite numerous improvement of supportive therapy, the mortality and morbidity among patients remain high. Therefore, exploring novel therapeutic options to treat AKI is mandatory. Numerous evidence in animal models has demonstrated the capability of mesenchymal stem cells(MSCs) to restore kidney function after induced kidney injury. After infusion, MSCs engraft in the injured tissue and release soluble factors and microvesicles that promote cell survival and tissue repairing. Indeed, the main mechanism of action of MSCs in tissue regeneration is the paracrine/endocrine secretion of bioactive molecules. MSCs can be isolated from several tissues, including bone marrow, adipose tissue, and blood cord; pre-treatment procedures to improve MSCs homing and their paracrine function have been also described. This review will focus on the application of cell therapy in AKI and it will summarize preclinical studies in animal models and clinical trials currently ongoing about the use of mesenchymal stem cells after AKI.
基金Supported by the Natural Science Basic Research Program of Shaanxi Province,China,No.2021JM-284Health Research Projects of Shaanxi Province,China,No.2021A010Science and Technology Planning Project of Xi’an,China,No.22YXYJ0111.
文摘Acute pancreatitis(AP)often leads to a high incidence of cardiac injury,posing significant challenges in the treatment of severe AP and contributing to increased mortality rates.Mesenchymal stem cells(MSCs)release bioactive molecules that participate in various inflammatory diseases.Similarly,extracellular vesicles(EVs)secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation.Recently,the therapeutic potential of MSCs-EVs in various inflammatory diseases,including sepsis and AP,has gained increasing recognition.Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited,several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases.Furthermore,clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases,wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs.Consequently,we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury.This paper aims to discuss this topic.However,additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury,as well as to ascertain their safety and efficacy.
基金a Project for Nuclear Military Personal Health Assessment and Radiation Damage Treat-ment, No. 616010305
文摘BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMSCs) are a potentially useful source for cell replacement therapy following spinal cord injury. However, the homing characteristics of BMSCs in vivo remain unclear. Low-dose radiation has been shown to promote homing of BMSCs to exposed sites. OBJECTIVE: To investigate the effects of low-dose local radiation to non-injured areas on the ability of human BMSCs to home to the injured mouse spinal cord, as well as recovery of spinal cord injury. DESIGN, TIME AND SE'I-FING: A randomized, controlled, animal experiment was performed at the Central Laboratory, Second Affiliated Hospital of Soochow University between October 2007 and October 2008. MATERIALS: BMSCs were isolated from four adult, human donors. METHODS: Fifty adult, female, Balb/c mice were subjected to adjusted weight-drop impact resulting in complete paraplegia. Three days later, mice were randomly assigned to a radiation + transplantation group (n = 23) and a transplantation group (n = 20). In total, 2 x 106 carboxyfluorescein diacetate succinimidyl ester-labeled BMSCs were injected into each mouse via the caudal vein. Mice in the radiation + transplantation group received 2.5 Gy local X-ray irradiation 2 hours before BMSCs injection. MAIN OUTCOME MEASURES: The homing of BMSCs to injured cord and irradiated skin after transplantation was observed by fluorescence microscope; the structure recovery of injured cord was assessed by magnetic resonance imaging. RESULTS: Compared with the transplantation group, at 24 hours after transplantation, the number of BMSCs was significantly increased in the injured area and the exposed site (P 〈 0.05), and inflammation and edema were significantly alleviated in the injured cord in the radiation + transplantation group. CONCLUSION: Local low-dose radiation has the potential to promote homing of BMSCs and recovery of spinal cord injury, although the radiated region was not injured area.
文摘Acute kidney injury(AKI)is a significant global health issue with limited current treatment options.This study focused on the mechanism by which exosomes derived from bone marrow mesenchymal stem cells(BMSCs)promote renal tubule regeneration in AKI through the regulation of the PTEN signaling pathway by miR-21.BMSCs were isolated and characterized,and their exosomes were purified.In vitro,renal tubular epithelial cell injury models were established,and the co-culture of exosomes and cells demonstrated enhanced cell proliferation and reduced apoptosis.In vivo,AKI animal models showed improved renal function and histopathological changes after exosome treatment.miR-21 was found to be upregulated in exosomes and recipient cells,targeting PTEN and activating the PI3K/AKT pathway.The signaling network also interacted with other pathways related to renal tubule regeneration.The study highlights the potential of exosome therapy for AKI and provides insights into the underlying molecular mechanisms,although further research is needed to address remaining challenges and translate these findings into clinical applications.
基金This study was supported by a grant from National Natural Science Foundation of China (No. 81070055).
文摘Background Acute lung injury (ALl) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units. The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS. Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury. Here, our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS. Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified. ALl was induced in rats byoleic acid (OA), and MSCs were transplanted intravenously. The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours, 24 hours and 48 hours after OA-injection. Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs. The concentration of tumor necrosis factor-a and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs, whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours, 24 hours and 48 hours after OA-challenge. Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS. Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.
基金National Natural Science Foundation of China(No.81072741)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,No.IRT_14R41)
文摘Objective Mesenchymal stem cells(MSCs) represent a promising population for supporting new clinical concepts in cellular therapy, and they can be reprogrammed into induced pluripotent stem cells(iPSCs) by defined factors. Methods This method opened up a new era of stem cell research, because the transplantation rejection of iPSCs is the bottleneck of its clinical application, so seeking alternative compounds and animal origin diagnostic reagents to achieve full chemical iPSCs is to be done to solve this problem. Results The application of these iPSCs has largely been associated with well known undesirable effects such as the development of cancers in certain experimental models. This has called for the search and use of reprogramming factors that are safe. Chinese materia medica(CMM) with tonifying kidney function(TKF) offers an alternative source. On the other hand, human umbilical cord mesenchymal stem cells(hUMSCs) are known to be a "young" source of MSCs, hUMSCs transplantation is an attractive approach for acute kidney injury repair. Therefore, In this study, we investigated whether the treatment of CMM with TKF on hUMSCs could enhance the repair in mice model of acute kidney injury after transplantation. Conclusion Our results showed that the treatment of hUMSCs with kidney tonifying CMM increased their multipotency, improved the renal function of mice and enhanced subsequent homing to the injured kidney in an acute kidney injury mice model.
基金Project supported by the Special Fund for Cooperation of Local Government and College(Schools and Institutes)in Changchun,Jilin Province(No.17DY024),China。
文摘Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
文摘There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.
基金supported by the in-house Laboratory Independent Research (ILIR) program of the U.S. Army
文摘After a radiological or nuclear event, acute radiation syndrome(ARS) will present complex medical challenges that could involve the treatment of hundreds to thousands of patients. Current medical doctrine is based on limited clinical data and remains inadequate. Efforts to develop medical innovations that address ARS complications are unlikely to be generated by the industry because of market uncertainties specific to this type of injury. A prospective strategy could be the integration of cellular therapy to meet the medical demands of ARS. The most clinically advanced cellular therapy to date is the administration of mesenchymal stem cells(MSCs). Results of currently published investigations describing MSC safety and efficacy in a variety of injury and disease models demonstrate the unique qualities of this reparative cell population in adapting to the specific requirements of the damaged tissue in which the cells integrate. This report puts forward a rationale for the further evaluation of MSC therapy to address the current unmet medical needs of ARS. We propose that the exploration of this novel therapy for the treatment of the multivariate complications of ARS could be of invaluable benefit to military medicine.
文摘Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation,such as that caused by detonation of nuclear devices and inappropriate medical treatments.Therefore,there is a growing need for medical interventions that facilitate the improved recovery of victims and patients.One promising approach may be cell therapy,which,when appropriately implemented,may facilitate recovery from whole body injuries.This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome,the benefits and limitations of which are under investigation.Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches.
文摘Coronavirus disease 2019(COVID-19),a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV2),is growing at an exponential rate worldwide.Manifestations of this disease are heterogeneous;however,advanced cases often exhibit various acute respiratory distress syndrome-like symptoms,systemic inflammatory reactions,coagulopathy,and organ involvements.A common theme in advanced COVID-19 is unrestrained immune activation,classically referred to as a“cytokine storm”,as well as deficiencies in immune regulatory mechanisms such as T regulatory cells.While mesenchymal stem cells(MSCs)themselves are objects of cytokine regulation,they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells,macrophages and neutrophils;and by reducing the activation of T and B cells,dendritic and nature killer cells.Consequently,they have therapeutic potential for treating severe cases of COVID-19.Here we discuss the unique ability of MSCs,to act as a“living antiinflammatory”,which can“rebalance”the cytokine/immune responses to restore equilibrium.We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.
基金Supported by Shandong Provincial Natural Science Foundation,No.ZR2020QC097China Postdoctoral Science Foundation,No.2019M661033+7 种基金Jiangxi Key New Product Incubation Program Funded by Technical Innovation Guidance Program of Shangrao city,No.2020G002Tianjin Science and Technology Project for Overseas Students,No.JH-20180070802Natural Science Foundation of Tianjin,No.19JCQNJC12500Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2018PT31048Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2019PT310013National Science and Technology Major Projects of China for“Major New Drugs Innovation and Development”,No.2014ZX09508002-003National Natural Science Foundation of China,No.81330015and Science and Technology Project of Tianjin,No.17ZXSCSY00030.
文摘The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
文摘The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) orcoronavirus disease 2019 (COVID-19) pandemic has exhausted the health systemsin many countries with thousands cases diagnosed daily. The currently usedtreatment guideline is to manage the common symptoms like fever and cough,but doesn’t target the virus itself or halts serious complications arising from thisviral infection. Currently, SARS-CoV-2 exhibits many genetic modulations whichhave been associated with the appearance of highly contagious strains. Thenumber of critical cases of COVID-19 increases markedly, and many of theinfected people die as a result of respiratory failure and multiple organ dysfunction. The regenerative potential of mesenchymal stem cells (MSCs) has beenextensively studied and confirmed. The impressive immunomodulation and antiinflammatoryactivity of MSCs have been recognized as a golden opportunity forthe treatment of COVID-19 and its associated complications. Moreover, MSCsregenerative and repairing abilities have been corroborated by many studies withpositive outcomes and high recovery rates. Based on that, MSCs infusion could bean effective mechanism in managing and stemming the serious complications andmultiple organ failure associated with COVID-19. In the present review, wediscuss the commonly reported complications of COVID-19 viral infection and theestablished and anticipated role of MSCs in managing these complications.
文摘Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ioniz-ing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung.
文摘Acute lung injury (ALI) is a common complication of sepsis with characteristics of acute onset, rapid change in the disease and high mortality. Since current clinical treatment can only alleviate the unfavorable condition to a certain extent but cure, we urgently need to find an effective treatment. Most scholars believe that sepsis-induced ALI is associated with extensive mitochondrial damage. In recent years, a widely studied pluripotent stem cell that is mesenchymal stem cell has been proved to alleviate and treat sepsis-induced ALI by transporting mitochondria via nanotubes in a microtubule-dependent manner. Research progress in this field will be reviewed in this study.
基金This work was supported by the Weatherhead Endowment Fund
文摘Acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are common life-threatening lung diseases associated with acute and severe inflammation.Both have high mortality rates,and despite decades of research on clinical ALI/ARDS,there are no effective therapeutic strategies.Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury.Recently,studies on the role of extracellular vesicles(EVs)in regulating normal and pathophysiologic cell activities,including inflammation and injury responses,have attracted attention.Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes,which can be used to diagnose and predict the development of ALI/ARDS.EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function,and thereby promote cell proliferation and tissue regeneration.This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation,particularly ALI/ARDS.