Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Int...Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.展开更多
In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random...In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.展开更多
An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks....An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.展开更多
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local...Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of secu...Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.展开更多
Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network, without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the network...Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network, without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the network performance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.展开更多
A critical challenge for mobile ad hoc networks is the design of efficient routing protocols which are able to provide high bandwidth utilization and desired fairness in mobile wireless environment without any fixed c...A critical challenge for mobile ad hoc networks is the design of efficient routing protocols which are able to provide high bandwidth utilization and desired fairness in mobile wireless environment without any fixed communication establishments. Although extensive efforts have already been devoted to providing optimization based distributed congestion elusion strategy for efficient bandwidth utilization and fair allocation in both wired and wireless networks,a common assumption therein is the fixed link capacities,which will unfortunately limit the application scope in mobile ad hoc networks where channels keep changing. In this paper,an effective congestion elusion strategy is presented explicitly based on ant colony algorithm for mobile ad hoc networks, which will explore the optimal route between two nodes promptly,meanwhile forecast congestion state of the link. Accordingly,a new path will be found rapidly to have the flow spread around to relieve the congestion degree. Compared with OLSR,the strategy proposed will greatly reduce the packet loss ratio and the average end-to-end delay at the same time,which illustrate that it will make use of networking resource effectively.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
This paper focuses on investigating immunological principles in designing a multi-agent security architecture for intrusion detection and response in mobile ad hoc networks. In this approach, the immunity-based agents...This paper focuses on investigating immunological principles in designing a multi-agent security architecture for intrusion detection and response in mobile ad hoc networks. In this approach, the immunity-based agents monitor the situation in the network. These agents can take appropriate actions according to the underlying security policies. Specifically, their activities are coordinated in a hierarchical fashion while sensing, communicating, decision and generating responses. Such an agent can learn and adapt to its environment dynamically and can detect both known and unknown intrusions. The proposed intrusion detection architecture is designed to be flexible, extendible, and adaptable that can perform real-time monitoring. This paper provides the conceptual view and a general framework of the proposed system. In the end, the architecture is illustrated by an example to show it can prevent the attack efficiently.展开更多
To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared....To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.展开更多
Due to their characteristics of dynamic topology, wireless channels and limited resources, mobile ad hoc networks are particularly vulnerable to a denial of service (DoS) attacks launched by intruders. The effects o...Due to their characteristics of dynamic topology, wireless channels and limited resources, mobile ad hoc networks are particularly vulnerable to a denial of service (DoS) attacks launched by intruders. The effects of flooding attacks in network simulation 2 (NS2) and measured performance parameters are investigated, including packet loss ratio, average delay, throughput and average number of hops under different numbers of attack nodes, flooding frequency, network bandwidth and network size. Simulation results show that with the increase of the flooding frequency and the number of attack nodes, network performance sharply drops. But when the frequency of flooding attacks or the number of attack nodes is greater than a certain value, performance degradation tends to a stable value.展开更多
A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can ...A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can provide different kinds of QoS (Quality of Service) for various applications. Admission controllers determine a committed bandwidth based on the reserved bandwidth of flows and the source utilization of networks. Packets are marked when entering into networks by markers according to the committed rate. By the mark in the packet header, intermediate nodes handle the received packets in different manners to provide applications with the QoS corresponding to the pre-negotiated profile. Extensive simulation experiments showed that the proposed mechanism can provide QoS guarantee to assured service traffic and increase the channel utilization of networks.展开更多
Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty i...Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.展开更多
A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model i...A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model is discussed and set up by using Poisson distribution. Then we analyze the process of traffic evaluation with enhanced learning, and exploit movement estimation to assist state memorization. The improvement of algorithm is provided at last compared with our previous work. Simulation results show that SAREL algorithm could achieve better performance in packet delivery ratio, especially when network connection ratio is average. Key words mobile ad hoc network - spatially aware routing - enhanced learning CLC number TP 316 Foundation item: Supported by Open Laboratory Foundation by China Ministry of Education (TKLJ9903), Project CarTALK 2000 by the European Commission (IST-2000-28185) and Project FleetNet-Internet on the Road by the German Ministry of Education and Research (01AK025)Biography: HAN Lu (1974-), male, Ph. D candidate, research direction; distributed artificial intelligence.展开更多
Identity authentication plays an important role in ad hoc networks as a part of the secure mechanism. On the basis of GQ signature scheme, a new GQ threshold group signature scheme was presented, by which a novel dist...Identity authentication plays an important role in ad hoc networks as a part of the secure mechanism. On the basis of GQ signature scheme, a new GQ threshold group signature scheme was presented, by which a novel distributed algorithm was proposed to achieve the multi-hop authentication for mobile ad hoc networks. In addition, a protocol verifying the identity with zero knowledge proofs was designed so that the reuse of certificates comes into truth. Moreover, the security of this algorithm was proved through the random oracle model. With the lower cost of computation and communication, this algorithm is efficient, secure and especially suitable for mobile ad hoc networks characterized by distributed computing, dynamic topology and multi-hop communications.展开更多
This paper theoretically analyzes a deficiency of the existing scheme, and proposes a distributed multi-hop certification authority scheme for mobile Ad Hoc networks. In our design, we distribute the certification aut...This paper theoretically analyzes a deficiency of the existing scheme, and proposes a distributed multi-hop certification authority scheme for mobile Ad Hoc networks. In our design, we distribute the certification authority functions through a threshold secret sharing mechanism, in which each node holds a secret share and multiple nodes jointly provide complete services. Certification authority is not limited in a local neighborhood but can be completed within multi-hop location. In addition, we replace broadcast by multicast to improve system performance and reduce communication overhead. This paper resolves some technical problems of ubiquitous certification authority services, and presents a wieldy multi-hop certification authority algorithm. Simulation results confirm the availability and effectiveness of our design.展开更多
Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centra...Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centralized server to avoid collisions which have negative effects on the performance of the network. Access to the shared media is controlled by a Backoff algorithm that is a part of the Media Access Protocol. In this paper, we improve the History Based Probabilistic Backoff (HPPB) algorithm by modifying the increment/decrement behavior of the Contention Window to introduce History Based Increment Backoff (HBIB) algorithm which outperforms HBPB in terms of throughput and end-to-end delay with various numbers of nodes and different traffic loads.展开更多
Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the net...Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.展开更多
An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous deli...An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A2C1003549).
文摘Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.
基金The National Basic Research Program of China(973 Program)(No.2009CB320501)the National Natural Science Foundation of China(No.61370209,61272532)the Natural Science Foundation of Jiangsu Province(No.BK2010414,BK2011335)
文摘In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.
基金The National Natural Science Foundation of China(No60362001)
文摘An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.
文摘Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
基金supported by the National Basic Research Program of China(973 Program)(2011CB302903)the Key Program of Natural Science for Universities of Jiangsu Province(10KJA510035)+2 种基金the Science and Technology Innovation Group Foundation of Jiangsu Province ("Qing and Lan" Project)the Postgraduate Innovation Project Foundation of Jiangsu Province(CX10B 194ZCX09B 152Z)
文摘Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.
文摘Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network, without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the network performance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.
基金Sponsored by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20122301120004)China Postdoctoral Science Foundation (Grant No. 2012M520778)+2 种基金Heilongjiang Province Postdoctoral Science Foundation (Grant No. LBH-Z12217)Research Foundation of Education Bureau of Heilongjiang Provincethe Youth Science Fund Project of Heilongjiang University (Grant No. QL201110)
文摘A critical challenge for mobile ad hoc networks is the design of efficient routing protocols which are able to provide high bandwidth utilization and desired fairness in mobile wireless environment without any fixed communication establishments. Although extensive efforts have already been devoted to providing optimization based distributed congestion elusion strategy for efficient bandwidth utilization and fair allocation in both wired and wireless networks,a common assumption therein is the fixed link capacities,which will unfortunately limit the application scope in mobile ad hoc networks where channels keep changing. In this paper,an effective congestion elusion strategy is presented explicitly based on ant colony algorithm for mobile ad hoc networks, which will explore the optimal route between two nodes promptly,meanwhile forecast congestion state of the link. Accordingly,a new path will be found rapidly to have the flow spread around to relieve the congestion degree. Compared with OLSR,the strategy proposed will greatly reduce the packet loss ratio and the average end-to-end delay at the same time,which illustrate that it will make use of networking resource effectively.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
基金Supported by the National High Technology Develop ment 863 Program of China (No.2003AA148010)Key Technologies R&D Program of China (No.2002DA103A03-07).
文摘This paper focuses on investigating immunological principles in designing a multi-agent security architecture for intrusion detection and response in mobile ad hoc networks. In this approach, the immunity-based agents monitor the situation in the network. These agents can take appropriate actions according to the underlying security policies. Specifically, their activities are coordinated in a hierarchical fashion while sensing, communicating, decision and generating responses. Such an agent can learn and adapt to its environment dynamically and can detect both known and unknown intrusions. The proposed intrusion detection architecture is designed to be flexible, extendible, and adaptable that can perform real-time monitoring. This paper provides the conceptual view and a general framework of the proposed system. In the end, the architecture is illustrated by an example to show it can prevent the attack efficiently.
基金Project(61225012)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61070162,71071028,70931001)supported by the National Natural Science Foundation of China+4 种基金Project(20120042130003)supported by the Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas,ChinaProjects(20100042110025,20110042110024)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2012)supported by the Specialized Development Fund for the Internet of Things from the Ministry of Industry and Information Technology of ChinaProject(N110204003)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(L2013001)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.
基金supported by the National Natural Science Foundation of China (60932003)the National High Technology Research and Development Program of China (863 Program)(2007AA01Z452+2 种基金 2009AA01Z118)Shanghai Municipal Natural Science Foundation (09ZR1414900)The National Undergraduate Innovative Test Program(091024812)
文摘Due to their characteristics of dynamic topology, wireless channels and limited resources, mobile ad hoc networks are particularly vulnerable to a denial of service (DoS) attacks launched by intruders. The effects of flooding attacks in network simulation 2 (NS2) and measured performance parameters are investigated, including packet loss ratio, average delay, throughput and average number of hops under different numbers of attack nodes, flooding frequency, network bandwidth and network size. Simulation results show that with the increase of the flooding frequency and the number of attack nodes, network performance sharply drops. But when the frequency of flooding attacks or the number of attack nodes is greater than a certain value, performance degradation tends to a stable value.
文摘A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can provide different kinds of QoS (Quality of Service) for various applications. Admission controllers determine a committed bandwidth based on the reserved bandwidth of flows and the source utilization of networks. Packets are marked when entering into networks by markers according to the committed rate. By the mark in the packet header, intermediate nodes handle the received packets in different manners to provide applications with the QoS corresponding to the pre-negotiated profile. Extensive simulation experiments showed that the proposed mechanism can provide QoS guarantee to assured service traffic and increase the channel utilization of networks.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.
文摘A new algorithm called spatially aware routing algorithm with enhanced learning (SAREL) is proposed to guarantee the rationality of route selecting in inter-vehicle communication scenario. Firstly, the traffic model is discussed and set up by using Poisson distribution. Then we analyze the process of traffic evaluation with enhanced learning, and exploit movement estimation to assist state memorization. The improvement of algorithm is provided at last compared with our previous work. Simulation results show that SAREL algorithm could achieve better performance in packet delivery ratio, especially when network connection ratio is average. Key words mobile ad hoc network - spatially aware routing - enhanced learning CLC number TP 316 Foundation item: Supported by Open Laboratory Foundation by China Ministry of Education (TKLJ9903), Project CarTALK 2000 by the European Commission (IST-2000-28185) and Project FleetNet-Internet on the Road by the German Ministry of Education and Research (01AK025)Biography: HAN Lu (1974-), male, Ph. D candidate, research direction; distributed artificial intelligence.
文摘Identity authentication plays an important role in ad hoc networks as a part of the secure mechanism. On the basis of GQ signature scheme, a new GQ threshold group signature scheme was presented, by which a novel distributed algorithm was proposed to achieve the multi-hop authentication for mobile ad hoc networks. In addition, a protocol verifying the identity with zero knowledge proofs was designed so that the reuse of certificates comes into truth. Moreover, the security of this algorithm was proved through the random oracle model. With the lower cost of computation and communication, this algorithm is efficient, secure and especially suitable for mobile ad hoc networks characterized by distributed computing, dynamic topology and multi-hop communications.
文摘This paper theoretically analyzes a deficiency of the existing scheme, and proposes a distributed multi-hop certification authority scheme for mobile Ad Hoc networks. In our design, we distribute the certification authority functions through a threshold secret sharing mechanism, in which each node holds a secret share and multiple nodes jointly provide complete services. Certification authority is not limited in a local neighborhood but can be completed within multi-hop location. In addition, we replace broadcast by multicast to improve system performance and reduce communication overhead. This paper resolves some technical problems of ubiquitous certification authority services, and presents a wieldy multi-hop certification authority algorithm. Simulation results confirm the availability and effectiveness of our design.
文摘Mobile Ad hoc Network (MANET) is a wireless network consisting of mobile devices (laptops, smart phones, etc.) that move and communicate with each other without the use of any existing network infrastructure or centralized server to avoid collisions which have negative effects on the performance of the network. Access to the shared media is controlled by a Backoff algorithm that is a part of the Media Access Protocol. In this paper, we improve the History Based Probabilistic Backoff (HPPB) algorithm by modifying the increment/decrement behavior of the Contention Window to introduce History Based Increment Backoff (HBIB) algorithm which outperforms HBPB in terms of throughput and end-to-end delay with various numbers of nodes and different traffic loads.
基金Project supported by the National Natural Science Foundation of China (Nos.10471088 and 60572126)the Science Foundation of Shanghai Municipal Commission of Education (No.06ZZ84)
文摘Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.
文摘An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.