To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared....To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
Initial works in ad hoc routing have considered only the problem of providing efficient mechanisms for finding paths in such networks,without considering security as a major problem.In such a trusted environment,malic...Initial works in ad hoc routing have considered only the problem of providing efficient mechanisms for finding paths in such networks,without considering security as a major problem.In such a trusted environment,malicious behaviors can disturb routing process.We present the design and performance evaluation of a new secure on-demand routing protocol for ad hoc networks, called CASR.CASR is robust against attackers from outside of the network and even it prevents compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes.Because of using symmetric cryptography in its structure,CASR is robust against large number of types of Denial-of -Service attacks.However,due to the applying of the random key predistributions method to the routing process our proposed scheme reaches a trade-off between the degree of security and complexity.展开更多
Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the net...Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.展开更多
This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, w...This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.展开更多
A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The no...A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.展开更多
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shap...This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shape, algorithm QSRA shapes disjoint-alternate-path structure, but is not limited to. It also contains another structure that every primary node has several links to alternate paths. This structure has two advantages, the first one is that primary nodes can select one alternate path immediately when primary routing is failure without going back to source node to re-discover a new routing or choose an alternate path; the second is that it guarantees primary nodes can select another alternate path as quickly as possible once one of alternate paths fails. Strongpoint of algorithm QSRA is reducing frequency of routing re-discovering. Besides, the structure occupies fewer resources than other routing algorithms due to its distributed structure. Simulation shows that QSRA has higher packets received ratio and lower control packet overhead and lower end-to-end delay.展开更多
In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of rec...In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.展开更多
A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session proces...A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.展开更多
In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad ho...In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.展开更多
The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly f...The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
Ad Hoc networks are prone to link failures due to mobility. In this letter, a link perdurability based routing scheme is proposed to try dealing with this problem. This scheme uses signal strength measurements to esti...Ad Hoc networks are prone to link failures due to mobility. In this letter, a link perdurability based routing scheme is proposed to try dealing with this problem. This scheme uses signal strength measurements to estimate the route life time and hence chooses a stable route, and is implemented in two typical ad hoc routing protocols to evaluate its performance. The simulation results have shown that this scheme can improve these protocols' packet delivery ratio in cases where there are frequent link failures.展开更多
Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is th...Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is that every terminal of an ad-hoc network is also functioning as a network router. In this paper we provide a comprehensive review about the principles and mechanisms of routing protocols used in ad-hoc networks. For comparison purposes, we discuss some relevant technical issues of two well-known routing strategies, namely On-Demand (Proactive routing) and Table-Driven (Reactive routing). In particular, focus our attention on two major and well-known routing protocols: AODV (Ad-hoc On-Demand Distance Vector Protocol) and OLSR (Optimized Link State Routing Protocol). Our study has no intention to suggest any definite solution for any ad-hoc network, because it is the case depending on dictated by the nature and varying factors of networks. Instead, we demonstrate our major perception and describe general models that may assist us while modeling a given network.展开更多
Routes in an ad hoc network may fail frequently because of node mobility. Stability therefore can be an important element in the design of routing protocols. The node escape probability is introduced to estimate the l...Routes in an ad hoc network may fail frequently because of node mobility. Stability therefore can be an important element in the design of routing protocols. The node escape probability is introduced to estimate the lifetime and stability of link between neighboring nodes and the escape probability based routing (EPBR) scheme to discover stable routes is proposed. Simulation results show that the EPBR can discover stable routes to reduce the number of route rediscovery, and is applicable for the situation that has highly dynamic network topology with broad area of communication.展开更多
Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy ...Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.展开更多
An ad hoc network is a group of wireless mobile computers(or nodes),in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range.Beca...An ad hoc network is a group of wireless mobile computers(or nodes),in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range.Because of node mobility and power limitations,the network topology changes frequently.Routing protocol plays an important role in the ad hoc network.A recent trend in ad hoc network routing is the reactive on-demand philosophy where routes are established only when required.As an optimization for the current Dynamic Source Routing Protocol,a secure and pragmatic routes selection scheme based on Reputation Systems was proposed.We design the Secure and Pragmatic Routing protocol and implement simulation models using GloMoSim.Simulation results show that the Secure and Pragmatic Routing protocol provides better experimental results on packet delivery ratio,power consumption and system throughput than Dynamic Source Routing Protocol.展开更多
A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the ...A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.展开更多
基金Project(61225012)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61070162,71071028,70931001)supported by the National Natural Science Foundation of China+4 种基金Project(20120042130003)supported by the Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas,ChinaProjects(20100042110025,20110042110024)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2012)supported by the Specialized Development Fund for the Internet of Things from the Ministry of Industry and Information Technology of ChinaProject(N110204003)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(L2013001)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金supported by Iran Telecommunication Research Center
文摘Initial works in ad hoc routing have considered only the problem of providing efficient mechanisms for finding paths in such networks,without considering security as a major problem.In such a trusted environment,malicious behaviors can disturb routing process.We present the design and performance evaluation of a new secure on-demand routing protocol for ad hoc networks, called CASR.CASR is robust against attackers from outside of the network and even it prevents compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes.Because of using symmetric cryptography in its structure,CASR is robust against large number of types of Denial-of -Service attacks.However,due to the applying of the random key predistributions method to the routing process our proposed scheme reaches a trade-off between the degree of security and complexity.
基金Project supported by the National Natural Science Foundation of China (Nos.10471088 and 60572126)the Science Foundation of Shanghai Municipal Commission of Education (No.06ZZ84)
文摘Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.
基金Supported by National Key Technology R&D Program of the Ministry of Science and Technology (2012BAB15B01)
文摘This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.
文摘A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
文摘This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shape, algorithm QSRA shapes disjoint-alternate-path structure, but is not limited to. It also contains another structure that every primary node has several links to alternate paths. This structure has two advantages, the first one is that primary nodes can select one alternate path immediately when primary routing is failure without going back to source node to re-discover a new routing or choose an alternate path; the second is that it guarantees primary nodes can select another alternate path as quickly as possible once one of alternate paths fails. Strongpoint of algorithm QSRA is reducing frequency of routing re-discovering. Besides, the structure occupies fewer resources than other routing algorithms due to its distributed structure. Simulation shows that QSRA has higher packets received ratio and lower control packet overhead and lower end-to-end delay.
基金the National High Technology Research and Development Progamme of China(No2005AA123820)the National Natural Science Foundation of China(No60472052 and No10577007)
文摘In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.
文摘A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.
基金This Paper is supported by the National Natural Science Foundation of China(Grants Nos.61761035,41761086,61461037,61661041).
文摘In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.
基金This work is supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the National Key Research and Development Project of China under Grant No.2018YFB1800801+2 种基金in part by the Primary Research&Development plan of Jiangsu Province under Grant BE2021013-4in part by the National Natural Science Foundation of China under Grants No.61827801 and 61631020the China Scholarship Council(CSC)Grant 202006830072.
文摘The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
基金Supported by Electronic Industrial Develop.Fund Project(No.20001077)
文摘Ad Hoc networks are prone to link failures due to mobility. In this letter, a link perdurability based routing scheme is proposed to try dealing with this problem. This scheme uses signal strength measurements to estimate the route life time and hence chooses a stable route, and is implemented in two typical ad hoc routing protocols to evaluate its performance. The simulation results have shown that this scheme can improve these protocols' packet delivery ratio in cases where there are frequent link failures.
文摘Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is that every terminal of an ad-hoc network is also functioning as a network router. In this paper we provide a comprehensive review about the principles and mechanisms of routing protocols used in ad-hoc networks. For comparison purposes, we discuss some relevant technical issues of two well-known routing strategies, namely On-Demand (Proactive routing) and Table-Driven (Reactive routing). In particular, focus our attention on two major and well-known routing protocols: AODV (Ad-hoc On-Demand Distance Vector Protocol) and OLSR (Optimized Link State Routing Protocol). Our study has no intention to suggest any definite solution for any ad-hoc network, because it is the case depending on dictated by the nature and varying factors of networks. Instead, we demonstrate our major perception and describe general models that may assist us while modeling a given network.
基金This project was supported by Pre-research Plan of Chinese National Defence (102010203), and Shanxi ProvincialScience and Technology Development Plan (2000K08-G12).
文摘Routes in an ad hoc network may fail frequently because of node mobility. Stability therefore can be an important element in the design of routing protocols. The node escape probability is introduced to estimate the lifetime and stability of link between neighboring nodes and the escape probability based routing (EPBR) scheme to discover stable routes is proposed. Simulation results show that the EPBR can discover stable routes to reduce the number of route rediscovery, and is applicable for the situation that has highly dynamic network topology with broad area of communication.
基金Project supported by the Development Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012)the Shanghai Leading Academic Discipline Project (Grant No.T0102)the Shanghai Fiber Optics Leading Lab (Grant No.SKLSF0200505)
文摘Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.
基金The National Natural Science Foundation of China (No.60403027)
文摘An ad hoc network is a group of wireless mobile computers(or nodes),in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range.Because of node mobility and power limitations,the network topology changes frequently.Routing protocol plays an important role in the ad hoc network.A recent trend in ad hoc network routing is the reactive on-demand philosophy where routes are established only when required.As an optimization for the current Dynamic Source Routing Protocol,a secure and pragmatic routes selection scheme based on Reputation Systems was proposed.We design the Secure and Pragmatic Routing protocol and implement simulation models using GloMoSim.Simulation results show that the Secure and Pragmatic Routing protocol provides better experimental results on packet delivery ratio,power consumption and system throughput than Dynamic Source Routing Protocol.
基金TheNationalHighTechnologyDevelopment"863"Program(No.2 0 0 1AA112051),TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6992 82 0 1)
文摘A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.