To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction ba...To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction based strategy is introduced to reduce the amount of Hello messages. In this strategy, a novel wireless link availability prediction model under line-of-sight (LOS) propagation environments is proposed based on which the parameter of Hello Interval in AODV can be dynamically adjusted to achieve the goal of changing the frequency of Hello message broadcasts under different link stability degrees. Simulation results demonstrate that, compared with the standard AODV with the periodic Hello message broadcast mechanism, the proposed protocol effectively reduces unnecessary control message overhead and greatly improves the performance in terms of end-to-end delay and efficiency.展开更多
In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of rec...In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.展开更多
Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing....Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing.While multipath routing in IoT networks can improve data transmission reliability and load balancing by establishing multiple paths between source and destination nodes,these networks are susceptible to security threats due to their wireless nature.Traditional security solutions developed for conventional networks are often ill-suited to the unique challenges posed by IoT environments.In response to these challenges,this paper proposes the integration of the Ad hoc On-demand Multipath Distance Vector(AOMDV)routing protocol with a trust model to enhance network performance.Key findings from this research demonstrate the successful fusion of AOMDV with a trust model,resulting in tangible improvements in network performance.The assessment of trustworthiness bolsters both security and routing capabilities in IoT networks.The trust model plays a crucial role in mitigating black hole attacks in IoT networks by evaluating the trustworthiness of nodes and helping in the identification and avoidance of malicious nodes that may act as black holes.Simulation results validate the efficacy of the proposed trust-based routing mechanism in achieving its objectives.Trust plays a pivotal role in decision-making and in the creation of secure distribution systems.By assessing the trustworthiness of nodes,both network security and routing efficiency can be enhanced.The effectiveness of the proposed trust-based routing mechanism is scrutinized through simulations,offering insights into its potential advantages in terms of improved network security and routing performance in the context of the IoT.展开更多
改进自组织按需平面距离向量(ad hoc on-demand distance vector,AODV)路由协议,以缓解其在无人机自组网中链路易断裂和修复效率低且开销大的问题。以路由开销最小、平均邻居节点数最大和节点间链路失效时间最长为优化标准建立链路,以...改进自组织按需平面距离向量(ad hoc on-demand distance vector,AODV)路由协议,以缓解其在无人机自组网中链路易断裂和修复效率低且开销大的问题。以路由开销最小、平均邻居节点数最大和节点间链路失效时间最长为优化标准建立链路,以保证链路的稳定性。从断裂处寻找上下游节点能量最强的共同邻居节点,分别建立其与断裂处上下游节点之间的链路,以提高修复速度,并避免断裂位置约束。当无人机节点速度为100m/s时,改进协议节点剩余能量增加54.4%,端到端的时延可降低21%,路由发现频率降低53%,丢包率降低17.2%。展开更多
基金The National High Technology Research and Development Program of China (863Program)(No2006AA01Z268)
文摘To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction based strategy is introduced to reduce the amount of Hello messages. In this strategy, a novel wireless link availability prediction model under line-of-sight (LOS) propagation environments is proposed based on which the parameter of Hello Interval in AODV can be dynamically adjusted to achieve the goal of changing the frequency of Hello message broadcasts under different link stability degrees. Simulation results demonstrate that, compared with the standard AODV with the periodic Hello message broadcast mechanism, the proposed protocol effectively reduces unnecessary control message overhead and greatly improves the performance in terms of end-to-end delay and efficiency.
基金the National High Technology Research and Development Progamme of China(No2005AA123820)the National Natural Science Foundation of China(No60472052 and No10577007)
文摘In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.
文摘Internet of Things(IoT)networks are characterized by a multitude of wireless,interconnected devices that can dynamically join or exit the network without centralized administration or fixed infrastructure for routing.While multipath routing in IoT networks can improve data transmission reliability and load balancing by establishing multiple paths between source and destination nodes,these networks are susceptible to security threats due to their wireless nature.Traditional security solutions developed for conventional networks are often ill-suited to the unique challenges posed by IoT environments.In response to these challenges,this paper proposes the integration of the Ad hoc On-demand Multipath Distance Vector(AOMDV)routing protocol with a trust model to enhance network performance.Key findings from this research demonstrate the successful fusion of AOMDV with a trust model,resulting in tangible improvements in network performance.The assessment of trustworthiness bolsters both security and routing capabilities in IoT networks.The trust model plays a crucial role in mitigating black hole attacks in IoT networks by evaluating the trustworthiness of nodes and helping in the identification and avoidance of malicious nodes that may act as black holes.Simulation results validate the efficacy of the proposed trust-based routing mechanism in achieving its objectives.Trust plays a pivotal role in decision-making and in the creation of secure distribution systems.By assessing the trustworthiness of nodes,both network security and routing efficiency can be enhanced.The effectiveness of the proposed trust-based routing mechanism is scrutinized through simulations,offering insights into its potential advantages in terms of improved network security and routing performance in the context of the IoT.
文摘改进自组织按需平面距离向量(ad hoc on-demand distance vector,AODV)路由协议,以缓解其在无人机自组网中链路易断裂和修复效率低且开销大的问题。以路由开销最小、平均邻居节点数最大和节点间链路失效时间最长为优化标准建立链路,以保证链路的稳定性。从断裂处寻找上下游节点能量最强的共同邻居节点,分别建立其与断裂处上下游节点之间的链路,以提高修复速度,并避免断裂位置约束。当无人机节点速度为100m/s时,改进协议节点剩余能量增加54.4%,端到端的时延可降低21%,路由发现频率降低53%,丢包率降低17.2%。