期刊文献+
共找到2,476篇文章
< 1 2 124 >
每页显示 20 50 100
基于AdaBoost.ECOC的合成孔径雷达图像目标识别研究 被引量:5
1
作者 郭巍 张平 +1 位作者 朱良 陈曦 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第2期232-236,共5页
为了提高合成孔径雷达图像目标识别系统的性能,提出了一种合成孔径雷达图像目标识别的新方法,结合纠错输出码对基本AdaBoost算法进行多类别推广,并将推广后的算法(AdaBoost.ECOC)应用于合成孔径雷达图像目标识别.用运动和静止目标获取... 为了提高合成孔径雷达图像目标识别系统的性能,提出了一种合成孔径雷达图像目标识别的新方法,结合纠错输出码对基本AdaBoost算法进行多类别推广,并将推广后的算法(AdaBoost.ECOC)应用于合成孔径雷达图像目标识别.用运动和静止目标获取与识别数据库中的三类地面军事目标进行识别实验,并将识别结果与其他识别方法进行比较.实验结果表明,提出的基于AdaBoost.ECOC的识别算法可以有效地应用于合成孔径雷达目标识别,并能显著提高目标识别系统的识别性能. 展开更多
关键词 合成孔径雷达 目标识别 纠错输出码 adaboost.ecoc
下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:1
2
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
基于改进SVM算法的电力工程异常数据检测方法设计 被引量:1
3
作者 王楠 周鑫 +2 位作者 周云浩 苏世凯 王增亮 《电子设计工程》 2024年第4期162-166,共5页
针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入A... 针对传统电力工程数据异常检测过程中存在准确度差且主观性较强的问题,文中提出了一种基于改进支持向量机的电力工程数据异常检测模型。其在传统支持向量机的基础上加入了二叉树多分类算法,从而使模型具备多特征分类能力。同时通过引入AdaBoost分类器,来改善支持向量机弱特征分类能力较差的不足。为进一步提高准确度,还使用鲸鱼算法对模型惩罚项、核函数及迭代次数进行优化。在实验测试中,所提算法的检测准确度相较其他三种对比算法分别提升了5.35%、2.17%和5.35%,说明该算法具备更为理想的性能,并可有效提升电力工程数据检测的准确度,故能为电力基建工程验收与管理提供数据支撑。 展开更多
关键词 支持向量机 ADABOOST算法 鲸鱼优化算法 二叉树结构 异常数据分析
下载PDF
从数据到证据:面向循证教学的学情诊断方法
4
作者 李红岩 杨宇 +2 位作者 秦瑶 付麦霞 吕宗旺 《现代教育技术》 CSSCI 2024年第11期90-99,共10页
在循证教学领域,证据的可靠性是确保教学改进措施科学性和有效性的重要前提。文章针对循证教学中证据的可靠性问题,提出了面向循证教学的学情诊断方法,能提炼可靠证据并应用于循证教学。此方法基于大规模的学生学习数据,运用随机森林对... 在循证教学领域,证据的可靠性是确保教学改进措施科学性和有效性的重要前提。文章针对循证教学中证据的可靠性问题,提出了面向循证教学的学情诊断方法,能提炼可靠证据并应用于循证教学。此方法基于大规模的学生学习数据,运用随机森林对数据的特征重要性进行评估,增强了数据选取的可信度;同时将随机森林与AdaBoost融合成随机森林-AdaBoost算法,用于学生期末综合评价成绩层级的学情诊断,提升了诊断结果的可靠性。为验证此方法的应用效果,文章通过对比实验进行了实证研究,结果显示:该方法不仅具有较高的预测准确度,而且表现出良好的稳定性和鲁棒性。文章从繁杂的学习数据中提炼出有效证据,提高了学情诊断的准确性,为实施个性化教学提供了依据,并有助于推动循证教学向数字化和智能化方向发展。 展开更多
关键词 循证教学 学情诊断 随机森林 ADABOOST
下载PDF
基于Adaboost回归算法的安徽省物流需求短期预测研究 被引量:1
5
作者 荀守奎 葛成丽 《河南科技》 2024年第2期27-33,共7页
【目的】物流需求预测有助于调整物流资源的分配,对促进物流业发展具有重要意义。【方法】选取安徽省1995—2022年与物流需求相关的指标数据为原始样本数据,用货运量来表征物流需求。通过XGBoost特征选择算法筛选出6个用于预测的指标。... 【目的】物流需求预测有助于调整物流资源的分配,对促进物流业发展具有重要意义。【方法】选取安徽省1995—2022年与物流需求相关的指标数据为原始样本数据,用货运量来表征物流需求。通过XGBoost特征选择算法筛选出6个用于预测的指标。在此基础上,使用3种方法分别构建模型,并对这些模型进行对比分析。最终,选择精度最高的Adaboost回归算法来预测安徽省短期物流需求。【结果】2023—2026年,安徽省的物流需求预测值分别为402 942.428万t、369 877.222万t、380 884.375万t、382 319.5万t。【结论】未来四年,安徽省物流的货运量呈不稳定发展态势。根据安徽省的区位优势及疫情的全面开放,安徽省物流业表现出较大的发展潜力。 展开更多
关键词 ADABOOST 特征选择 物流需求预测 安徽省
下载PDF
基于最佳特征子集的自适应非视距身份识别系统
6
作者 魏忠诚 张新秋 +3 位作者 张世泽 冯浩 连彬 王巍 《计算机应用与软件》 北大核心 2024年第10期77-86,共10页
身份识别一直是安防领域的研究重点,其在非视距场景下的研究存在较大意义。针对识别的舒适度和隐私性问题,提出基于最佳特征子集的自适应非视距身份识别系统。通过有效结合多种预处理手段获取Wi-Fi信号的低维有用数据;提出鲁棒性人员检... 身份识别一直是安防领域的研究重点,其在非视距场景下的研究存在较大意义。针对识别的舒适度和隐私性问题,提出基于最佳特征子集的自适应非视距身份识别系统。通过有效结合多种预处理手段获取Wi-Fi信号的低维有用数据;提出鲁棒性人员检测方法截取有效片段;设计有监督特征提取方法,使用“前向搜索”获取最佳特征子集;改进传统Adaboost算法实现群体变化下的自适应识别。实验评估表明,当系统中志愿者为2~12人时,与相关系统和传统分类算法相比,均具有较好的性能。 展开更多
关键词 身份识别 非视距 Wi-Fi信号 最佳特征子集 ADABOOST算法
下载PDF
多域特征提取结合AdaBoost的含未知故障提速道岔故障诊断方法
7
作者 郑云水 张亚宁 《机械科学与技术》 CSCD 北大核心 2024年第8期1350-1358,共9页
针对提速道岔未知新故障误判影响列车安全运行及道岔检修效率的问题,提出一种基于多域特征提取和自适应提升算法(Adaptive boosting, adaboost)的信号分析及故障诊断模型。首先,为了深入挖掘道岔的故障特征,分别从时域、频域及时频域提... 针对提速道岔未知新故障误判影响列车安全运行及道岔检修效率的问题,提出一种基于多域特征提取和自适应提升算法(Adaptive boosting, adaboost)的信号分析及故障诊断模型。首先,为了深入挖掘道岔的故障特征,分别从时域、频域及时频域提取故障特征,构造原始特征集;然后根据AdaBoost模型获得的特征重要度排序构造不同特征数量的分类模型,并利用模型分类精度进一步获得最佳特征子集;最后将最佳特征子集输入含判定机制的AdaBoost故障诊断模型,完成对提速道岔含未知故障类型的诊断,同时,通过对模型的再训练,实现了对现有故障诊断模型的自适应更新。结果表明:本文方法在有效提取故障特征,提高道岔已知类故障诊断精度的同时,可以有效地识别出道岔之前未出现的新故障。 展开更多
关键词 特征提取 ADABOOST 未知故障 提速道岔 故障诊断
下载PDF
混合增强型机器学习算法在稀土供应链金融中评价中小企业信用风险的研究
8
作者 徐中辉 饶振远 +2 位作者 黄晓东 姜馨圳 马艳丽 《稀有金属与硬质合金》 CAS CSCD 北大核心 2024年第4期94-102,共9页
稀土是支撑高端技术创新和新能源产业发展的关键原材料之一,研究解决稀土供应链中小企业融资困难的问题,做强我国稀土产业链,更好地维护国家战略利益是当务之急。供应链金融作为创新型融资方式成为实现中小企业融资授信的一种主要手段,... 稀土是支撑高端技术创新和新能源产业发展的关键原材料之一,研究解决稀土供应链中小企业融资困难的问题,做强我国稀土产业链,更好地维护国家战略利益是当务之急。供应链金融作为创新型融资方式成为实现中小企业融资授信的一种主要手段,但其中信用风险问题成为融资决策中需解决的最关键问题之一。本文提出了一种混合增强型机器学习算法,首先采用动态透镜成像反向学习改进的海洋捕食者算法(IMPA)对支持向量机算法(SVM)进行优化,再采用AdaBoost算法对优化后的SVM进行集成,建立AdaBoost-IMPA-SVM模型。采用该模型对供应链金融风险进行评价,重新建立供应链金融风险体系指标,通过相关性分析进行特效选取,并从计算机通信及其他制造业选取52家中国上市中小企业2019—2021年期间140个样本作为特征变量输入模型。仿真实验结果验证了该模型相较于其他信用风险评价模型具有更好的分类识别性能。 展开更多
关键词 稀土产业链 供应链金融 中小企业 信用风险评价 混合增强型机器学习算法 海洋捕食者算法 支持向量机算法 AdaBoost算法
下载PDF
基于集成算法的腐蚀管道失效压力预测研究
9
作者 骆正山 张佳琦 骆济豪 《计算机技术与发展》 2024年第5期80-86,共7页
为了提高腐蚀管道剩余强度的预测精度、解决单一预测模型易受训练数据的质量影响而发生运行及预测输出不稳定的问题,引入两种集成模型方法。首先对于串行结构集成方法,以支持向量回归(SVR)融合正余弦策略改进的黑猩猩优化算法(IChOA)为... 为了提高腐蚀管道剩余强度的预测精度、解决单一预测模型易受训练数据的质量影响而发生运行及预测输出不稳定的问题,引入两种集成模型方法。首先对于串行结构集成方法,以支持向量回归(SVR)融合正余弦策略改进的黑猩猩优化算法(IChOA)为基础建立AdaBoost-IChOA-SVR模型;其次对于双层并行结构方法,根据预测问题筛选出相关性低且学习效果良好的预测算法作为第一层基预测器,调节新数据集形成方式及相关参数设置,建立Stacking堆叠集成模型。以含腐蚀缺陷管道失效压力爆破数据为例,利用MATLAB分别进行仿真模拟,与基础SVR和PSO-ELM模型的预测结果及评价指标进行对比分析。研究结果表明:集成预测模型具有更好的预测输出性能,且串行结构的AdaBoost集成学习模型的构造流程较为简洁,运行速度及精度更高;该模型对腐蚀缺陷管道失效压力预测问题的拟合度可达0.996,相对误差均值可达3.69%,可为后续腐蚀管道相关预测模型建立和防护维修策略制定提供参考。 展开更多
关键词 安全工程科学技术 集成模型 腐蚀管道失效压力 AdaBoost集成学习 STACKING 黑猩猩优化算法
下载PDF
基于ECOC平衡随机森林的雷达降水粒子分类
10
作者 李海 田众 钱君 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1599-1606,共8页
针对数据不平衡情况下的降水粒子分类问题,提出了一种基于纠错输出码(error correcting output code,ECOC)平衡随机森林的双偏振气象雷达降水粒子分类方法。首先,将多类别降水粒子数据集编码为多个二分类数据集;然后,对二分类数据集进... 针对数据不平衡情况下的降水粒子分类问题,提出了一种基于纠错输出码(error correcting output code,ECOC)平衡随机森林的双偏振气象雷达降水粒子分类方法。首先,将多类别降水粒子数据集编码为多个二分类数据集;然后,对二分类数据集进行有放回的平衡重采样,构建多棵分类回归树;最后,利用所有的分类回归树联合进行降水粒子分类。对实测数据的处理结果表明,所提方法能够在保证总体准确率较高的情况下,大幅提高少数类的分类效果。 展开更多
关键词 双偏振气象雷达 降水粒子分类 数据不平衡 纠错输出码 平衡随机森林
下载PDF
基于改进LSTM-AdaBoost的铣刀磨损量预测
11
作者 赵小惠 杨文彬 +2 位作者 胡胜 郇凯旋 谭琦 《机床与液压》 北大核心 2024年第10期14-20,共7页
针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的... 针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的核心参数,并将优化后的LSTM网络与AdaBoost算法进行结合,构建铣刀磨损量预测模型。最后用PHM Society 2010铣刀全寿命周期的振动数据进行实验。研究结果表明:所提方法能够有效地预测出铣刀磨损量变化值,优化后模型的平均绝对误差百分比为3.436%、均方根误差为6.471、决定系数R^(2)为0.935。该方法能够获得准确率更高的铣刀磨损量预测值,预测效率更高。 展开更多
关键词 铣刀磨损 磨损量预测 黑寡妇算法 长短期记忆神经网络 ADABOOST算法
下载PDF
基于Adaboost算法的沉积微相自动识别--以陇东气田Q区山西组为例 被引量:1
12
作者 黄千玲 赵军龙 +1 位作者 白倩 许鉴源 《地质通报》 CAS CSCD 北大核心 2024年第4期658-666,共9页
在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉... 在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉积微相和测井数据之间建立精确的对应关系。为了充分利用测井资料,提高沉积微相划分的效率,提出一种基于Adaboost算法的沉积微相自动识别方法,为后期气田开发沉积背景及单砂体刻画提供更准确的依据。在研究中,对测井曲线进行优选,并进行预处理,运用数学统计法提取了6个特征参数作为训练的输入集,把沉积微相的类型作为训练的输出结果标签,从已解释的沉积微相数据中选取共1210组作为训练样本,其中组建的训练样本共约968组,组建测试样本242组。研究结果显示,应用该方法的训练效果和测试结果的准确性分别达到96.45%,90.4%,可以验证该方法在陇东气田Q区应用效果较好。 展开更多
关键词 沉积微相 ADABOOST算法 测井 自动识别 陇东气田
下载PDF
不均衡小样本下的设备状态与寿命预测 被引量:1
13
作者 陈扬 刘勤明 郑伊寒 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期217-226,共10页
针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系... 针对面向小样本不均衡设备健康监测数据时AdaBoost处理效果差的问题,提出了基于裁剪过采样新增AdaBoost算法的设备健康状态分析以及寿命预测模型。首先,基于AdaBoost计算出样本权值分布和容量,根据样本最大权值与样本个数生成改进裁剪系数,选择性地对权值大于裁剪系数的样本进行处理从而提高计算效率。其次,通过类k近邻法则过滤出错分类样本权值,随后引入合成少数类过采样技术提升该种类样本权值个数,有效规避迭代过程中不均衡数据集可能引起的过拟合问题。最后,通过对设备运行状态进行准确分类并拟合出与时间相关的设备寿命曲线预测设备寿命。算例结果表明,所提模型能够有效分析出不均衡数据下的设备健康状况,同时也可以对剩余寿命进行有效预测。 展开更多
关键词 小样本 不均衡数据 ADABOOST算法 合成少数类过采样技术 剩余寿命预测
下载PDF
基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测 被引量:2
14
作者 史彭珍 魏霞 +3 位作者 张春梅 谢丽蓉 叶家豪 杨家梁 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期226-233,共8页
针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,... 针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,利用变分模态分解将原始功率信号数据分解多个子序列。其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测。最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性。结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度。 展开更多
关键词 风电功率预测 最小二乘支持向量机 变分模态分解 自适应校正 预测精度
下载PDF
一种可用于肝癌呼气信号鉴别的改进AdaBoost级联分类器
15
作者 郝丽俊 朱耿 +1 位作者 黄钢 严加勇 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期162-172,共11页
为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采... 为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采用K折交叉训练和投票法得到多个子分类器;接着,将多个子分类器加权组合得到一个改进的AdaBoost分类器;然后,再次自助划分训练样本,以新的训练子集训练得到另一个AdaBoost分类器;最后,将两个AdaBoost分类器串联形成级联分类器。测试样本送入该级联分类器后,按照级联规则,潜在的异常样本将被反复筛查。以电子鼻采集到的120名志愿者的呼气信号的Relief优化特征集为训练样本,构建改进AdaBoost级联分类器,并对40例测试样本进行鉴别。结果表明,该级联分类器可有效区分出测试组中的肝癌患者和健康人的呼气信号,平均敏感性为93.42%,明显优于传统AdaBoost级联分类器,漏诊率显著降低。此外,该级联分类器的稳定性较好,精度的变异系数仅为3.95%。可见,改进AdaBoost级联分类器可有效提升分类器对肝癌呼气信号的检测能力,对实现基于呼气检测的肝癌无创普及性筛查技术的研究具有重要意义。 展开更多
关键词 肝癌呼气法检测 AdaBoost级联分类器 漏诊率 变异系数 Relief优化特征集
下载PDF
基于AdaBoost学习策略的污水近红外光谱快速检测
16
作者 王劲夫 郭松杰 +3 位作者 厉林聪 赵顺毅 栾小丽 刘飞 《控制工程》 CSCD 北大核心 2024年第7期1314-1323,共10页
对实际污水样本的近红外光谱数据进行建模,可以预测水质指标,实现污水水质监测。但实际污水样本的多样性不足,标签值集中在某个较低的区间内,样本间离散度低、区分度小,导致近红外光谱数据和标签值间的相关性较弱,一般的分类模型和回归... 对实际污水样本的近红外光谱数据进行建模,可以预测水质指标,实现污水水质监测。但实际污水样本的多样性不足,标签值集中在某个较低的区间内,样本间离散度低、区分度小,导致近红外光谱数据和标签值间的相关性较弱,一般的分类模型和回归模型的预测准确度较低。因此,利用自适应增强(adaptive boosting,AdaBoost)算法进行建模以提高模型的准确度,利用集成策略将多个子学习器组合为一个准确度更高的强学习器。此外,人为配置具有浓度梯度的标准样本对实际污水样本进行补充,以减弱实际污水样本的多样性不足对建模精度的影响。在不同数据集上对AdaBoost算法和其他常用算法进行了对比,对比结果证明了AdaBoost算法在污水水质快速检测方面的有效性。 展开更多
关键词 ADABOOST 近红外光谱 机器学习 快速检测
下载PDF
地表沉陷预测的改进BP神经网络模型
17
作者 姜燕 连晗 席东河 《金属矿山》 CAS 北大核心 2024年第2期205-211,共7页
为了更加准确地预测地表沉陷变形,基于Adaboost算法采用多网络共同计算策略改进了BP神经网络,通过实际沉降数据对Adaboost算法改进后的神经网络进行训练,预测地表最大下沉量、影响角正切和拐点偏移距,将预测的3个参数代入概率积分法中,... 为了更加准确地预测地表沉陷变形,基于Adaboost算法采用多网络共同计算策略改进了BP神经网络,通过实际沉降数据对Adaboost算法改进后的神经网络进行训练,预测地表最大下沉量、影响角正切和拐点偏移距,将预测的3个参数代入概率积分法中,建立了地表沉陷公式,对改进效果和地表沉陷公式分别进行了验证。结果表明:(1)通过对比改进前后BP神经网络的计算精度,未经过Adaboost算法改进的BP神经网络误差明显大于改进后的BP神经网络,说明基于Adaboost修正后的BP神经网络计算精度得到了有效提升;(2)基于BP神经网络对最大下沉量、影响角正切和拐点偏移距3个参数进行预测,结合概率分析法,能够实现稳沉后采空区主断面上方地表沉降规律的准确描述。以鲁西南地区某矿3301采空区地表为例,利用改进BP神经网络预测了地表最大下沉量、影响角正切和拐点偏移距,进而给出了地表沉陷曲线,与现场实测结果对比显示:改进BP神经网络的最大误差小于0.105 m,最大相对误差为4.3%,证明了所提计算方法的可靠性。 展开更多
关键词 地表沉陷 BP神经网络 采空区 ADABOOST算法 误差分析
下载PDF
基于自适应增强(AdaBoost)的径向基(RBF)神经网络改进算法在关键词预测中的应用
18
作者 陈张一 朱朝阳 +1 位作者 邹玲 胡小君 《科技管理研究》 CSSCI 2024年第18期215-221,共7页
探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的... 探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的时间属性基础上,提出一种基于自适应增强(AdaBoost)的径向基(RBF)神经网络预测算法(以下简称“RBF改进算法”),对关键词频次进行分析预测。对中国知网2007—2022年收录的医学图像期刊论文关键词进行处理,其中将2007年至2021年的数据作为实验训练数据,2022年数据作为验证数据,通过算例分析,对比RBF改进算法、反向传播算法和时间序列算法对关键词词频的预测结果。结果发现:通过AdaBoost算法对RBF算法进行改进,能够增强RBF神经网络的泛化能力以及对样本的适应性,同时保留了RBF神经网络较好的非线性映射能力这一优点;RBF改进算法预测结果与实际数据接近,其预测精度优于反向传播神经网络和时间序列算法,该算法的预测效果更佳。 展开更多
关键词 词频 预测算法 ADABOOST算法 RBF神经网络 算法应用 算法优化 医学图像
下载PDF
基于路径类比推理的药物重定位方法
19
作者 陈耿靖 王晖 +1 位作者 郭躬德 林世水 《计算机技术与发展》 2024年第8期158-165,共8页
传统药物研发模式有着费用昂贵、效率低下、时间周期较长等问题,而药物重定位方法为降低成本、提高效率、缩短时间提供了一种可行的选择。目前已经提出了许多利用知识图谱进行药物重定位的方法,并取得相对可观的成果,但它们存在涉及限... 传统药物研发模式有着费用昂贵、效率低下、时间周期较长等问题,而药物重定位方法为降低成本、提高效率、缩短时间提供了一种可行的选择。目前已经提出了许多利用知识图谱进行药物重定位的方法,并取得相对可观的成果,但它们存在涉及限制数据集范围、处理的关系较单一,且不考虑节点间路径信息等局限。为弥补这些不足,该文提出了一种基于路径类比推理的药物重定位方法。首先,整合多个生物数据集构建异构信息网络。其次,对多种知识图谱嵌入模型(TransE、DistMult、ComplEx、RotatE和RGCN)进行训练,获得嵌入向量。再次,采用Adaboost决策树集成路径排序算法和多层感知机获取原始推理路径,结合类比推理进行预测。最后,通过传统性能、嵌入评估及复现率,选定TransE模型作为预测模型。该方法成功找到10种重定位候选药物,并通过相关文献证实它们的治疗效果,充分验证了该方法的有效性。该方法也可为其他从事药物重定位研究的学者提供一种结合路径信息的新思路。 展开更多
关键词 药物重定位 知识图谱嵌入 类比推理 路径排序算法 ADABOOST
下载PDF
基于FOA-BP-AdaBoost的大坝变形预测模型及应用
20
作者 王凯 李鸳承 +3 位作者 范亚军 何广焕 蒙金龙 赵磊 《红水河》 2024年第2期1-5,共5页
为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位... 为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位量化对比。结果表明:强预测模型集齐了果蝇算法全局优化、BP神经网络局部寻优和AdaBoost“优中选优”的特点,最大程度优化了预测效果;实例应用证实了FOA-BP-AdaBoost模型在大坝变形预测领域的准确性和有效性。该模型已成功应用于工程实例,可为类似工程提供参考。 展开更多
关键词 大坝 变形监测 FOA-BP-AdaBoost模型 强预测模型 果蝇优化算法 BP神经网络
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部