目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1...目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1A相关基因mRNA和蛋白水平的差异表达。利用ELISA法检测收集于我院初诊的COAD患者和正常人血浆中m1A甲基化水平。结合COAD临床病理特征分析m1A甲基化对COAD的诊断效能。结果m1A编码器和读码器基因的蛋白水平和mRNA水平在COAD组织中的表达显著上调,其中以TRMT6和TRMT10C两个编码器表达升高最为显著。两个编码器基因均可作为COAD诊断,尤其是早期诊断标志物,且其AUC均达到0.9以上。m1A总体甲基化水平在COAD血浆中明显升高,并可作为早期COAD的诊断标志物。结论m1A编码器基因和血浆m1A在COAD中明显升高,有望成为一种新的早期COAD诊断标志物。展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ...Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia.Therefore,macrophage-based therapeutic targets need to be explored for ischemic disease.In the current st...The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia.Therefore,macrophage-based therapeutic targets need to be explored for ischemic disease.In the current study,we found that the mRNA levels of scavenger receptor A1(Sr-a1)were elevated in patients with critical limb ischemia,based on an analysis of the Gene Expression Omnibus data.We then investigated the role and underlying mechanisms of macrophage SR-A1 in a mouse hindlimb ischemia(HLI)model.Compared with the Sr-a1^(fl/fl)mice,the Lyz^(Cre+)/Sr-a1^(flox/flox)(Sr-a1~(ΔMΦ))mice showed significantly reduced laser Doppler blood flow in the ischemic limb on day seven after HLI.Consistently,histological analysis revealed that the ischemic limb of the Sr-a1~(ΔMΦ)mice exhibited more severe and prolonged necrotic morphology,inflammation,fibrosis,decreased vessel density,and delayed regeneration than that of the control Sr-a1~(fl/fl)mice.Furthermore,restoring wild-type myeloid cells to the Sr-a1 knockout mice effectively improved the Doppler perfusion in the ischemic limb and mitigated skeletal muscle damage seven days after HLI.Consistent with these in vivo findings,co-cultivating macrophages with the mouse myoblast cell line C2C12 revealed that the Sr-a1^(-/-)bone marrow macrophages significantly inhibited myoblast differentiation in vitro.Mechanistically,SR-A1 enhanced the skeletal muscle regeneration in response to HLI by inhibiting oncostatin M production via suppression of the NF-κB signaling activation.These findings indicate that SR-A1 may be a promising candidate protein to improve tissue repair and regeneration in peripheral ischemic arterial disease.展开更多
文摘目的探讨m1A RNA甲基化相关基因和血浆m1A甲基化水平对结肠腺癌(colorectal adenocarcinoma,COAD)的诊断效能,为COAD早期诊断提供新的方案。方法通过UALCAN、The Human Protein Atlas和TCGA-GTEx数据库,分析COAD组织和正常结肠组织中m1A相关基因mRNA和蛋白水平的差异表达。利用ELISA法检测收集于我院初诊的COAD患者和正常人血浆中m1A甲基化水平。结合COAD临床病理特征分析m1A甲基化对COAD的诊断效能。结果m1A编码器和读码器基因的蛋白水平和mRNA水平在COAD组织中的表达显著上调,其中以TRMT6和TRMT10C两个编码器表达升高最为显著。两个编码器基因均可作为COAD诊断,尤其是早期诊断标志物,且其AUC均达到0.9以上。m1A总体甲基化水平在COAD血浆中明显升高,并可作为早期COAD的诊断标志物。结论m1A编码器基因和血浆m1A在COAD中明显升高,有望成为一种新的早期COAD诊断标志物。
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
基金supported by the National Natural Science Foundation of China,Nos.81730033,82171193(to XG)the Key Talent Project for Strengthening Health during the 13^(th)Five-Year Plan Period,No.ZDRCA2016069(to XG)+1 种基金the National Key R&D Program of China,No.2018YFC2001901(to XG)Jiangsu Provincial Medical Key Discipline,No.ZDXK202232(to XG)。
文摘Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.82030012,81670263,82170444,82270476,82270361,and 82100433)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.24KJA310003)。
文摘The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia.Therefore,macrophage-based therapeutic targets need to be explored for ischemic disease.In the current study,we found that the mRNA levels of scavenger receptor A1(Sr-a1)were elevated in patients with critical limb ischemia,based on an analysis of the Gene Expression Omnibus data.We then investigated the role and underlying mechanisms of macrophage SR-A1 in a mouse hindlimb ischemia(HLI)model.Compared with the Sr-a1^(fl/fl)mice,the Lyz^(Cre+)/Sr-a1^(flox/flox)(Sr-a1~(ΔMΦ))mice showed significantly reduced laser Doppler blood flow in the ischemic limb on day seven after HLI.Consistently,histological analysis revealed that the ischemic limb of the Sr-a1~(ΔMΦ)mice exhibited more severe and prolonged necrotic morphology,inflammation,fibrosis,decreased vessel density,and delayed regeneration than that of the control Sr-a1~(fl/fl)mice.Furthermore,restoring wild-type myeloid cells to the Sr-a1 knockout mice effectively improved the Doppler perfusion in the ischemic limb and mitigated skeletal muscle damage seven days after HLI.Consistent with these in vivo findings,co-cultivating macrophages with the mouse myoblast cell line C2C12 revealed that the Sr-a1^(-/-)bone marrow macrophages significantly inhibited myoblast differentiation in vitro.Mechanistically,SR-A1 enhanced the skeletal muscle regeneration in response to HLI by inhibiting oncostatin M production via suppression of the NF-κB signaling activation.These findings indicate that SR-A1 may be a promising candidate protein to improve tissue repair and regeneration in peripheral ischemic arterial disease.