在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法...在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。展开更多
为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法...为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。展开更多
文摘在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。
文摘为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。