期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进MobileViT的葡萄叶部病害识别模型
1
作者 胡施威 邱林 邓建新 《山东农业科学》 2024年第10期159-166,共8页
本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添... 本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添加Dropout层,防止数据出现过拟合现象;最后,选用结合权重衰减的优化器AdamW(Adam with Weight Decay Regularization),更好地控制模型复杂度并提高泛化能力。实验结果显示,相较于MobileViT基础网络,改进后的CD-MobileViT网络在精确率、召回率、F1得分和准确率方面分别提高了1.77、1.85、1.65、1.75个百分点,与其他几种经典网络模型(InceptionV1、MobileNetV2、EfficientNetB0、VGG-16)相比也有不同程度的提升(0.25~1.47个百分点),说明本研究提出的模型在葡萄叶部病害识别上有良好的效果,未来可部署到移动端使用,为葡萄叶部病害的准确识别提供新的解决方案。 展开更多
关键词 葡萄叶部病害识别 MobileViT网络 坐标注意力 adamw优化器 Dropout层
下载PDF
融合注意力机制的残差网络晶体硅片分类方法
2
作者 徐小平 寇嘉程 +1 位作者 苏李君 刘广钧 《数学的实践与认识》 2023年第5期122-132,共11页
为了更好地利用晶体硅片资源,实现对晶体硅片准确高效的分类,提出了一种改进的ResNet34卷积神经网络,且用于对晶体硅片高清图像进行分类.通过拍摄晶体硅片高清图像建立自有数据集,并对其进行离线扩充来有效扩大数据集.基于ResNet34网络... 为了更好地利用晶体硅片资源,实现对晶体硅片准确高效的分类,提出了一种改进的ResNet34卷积神经网络,且用于对晶体硅片高清图像进行分类.通过拍摄晶体硅片高清图像建立自有数据集,并对其进行离线扩充来有效扩大数据集.基于ResNet34网络建立分类模型,采取自适应矩估计权重衰减优化算法(AdamW)来提高ResNet34网络的泛化能力,同时将注意力机制的方法融入到ResNet34网络中增强模型的特征提取能力,之后将改进的模型载入到晶体硅片数据集上训练,实验结果发现,所提W-ResNet34+SC-SEAM分类模型的准确率可达99.91%,比在仅利用ResNet34模型分类结果上提高了2.68%的准确率,实现了对晶体硅片的精确分类,证明了所提分类方法是可行的. 展开更多
关键词 晶体硅片 分类 注意力机制 卷积神经网络 adamw优化器
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部