期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Adam优化的CNN超分辨率重建
被引量:
33
1
作者
赵小强
宋昭漾
《计算机科学与探索》
CSCD
北大核心
2019年第5期858-865,共8页
为了使单帧图像在不同放大倍数的条件下进行超分辨率重建能得到较好的效果,提出了一种Adam优化的卷积神经网络(convolutional neural network,CNN)超分辨率重建方法。该方法首先使用ISODATA(iterative selforganizing data analysis)聚...
为了使单帧图像在不同放大倍数的条件下进行超分辨率重建能得到较好的效果,提出了一种Adam优化的卷积神经网络(convolutional neural network,CNN)超分辨率重建方法。该方法首先使用ISODATA(iterative selforganizing data analysis)聚类算法对训练的图像集进行分类处理,然后在Adam优化的卷积神经网络中对输入图像进行特征提取和非线性映射得到特征映射图,最后在Adam优化的卷积神经网络中对特征映射图进行反卷积重建得到多尺度放大的重建图像。通过实验验证使用该方法在不同放大倍数条件下的重构效果优于传统算法,在视觉效果上有较好的表现。
展开更多
关键词
超分辨率重建
卷积神经网络(CNN)
ISODATA聚类算法
Adam优化算法
下载PDF
职称材料
题名
Adam优化的CNN超分辨率重建
被引量:
33
1
作者
赵小强
宋昭漾
机构
兰州理工大学电气工程与信息工程学院
甘肃省工业过程先进控制重点实验室
兰州理工大学国家级电气与控制工程实验教学中心
出处
《计算机科学与探索》
CSCD
北大核心
2019年第5期858-865,共8页
基金
国家自然科学基金Nos.61763029
61873116~~
文摘
为了使单帧图像在不同放大倍数的条件下进行超分辨率重建能得到较好的效果,提出了一种Adam优化的卷积神经网络(convolutional neural network,CNN)超分辨率重建方法。该方法首先使用ISODATA(iterative selforganizing data analysis)聚类算法对训练的图像集进行分类处理,然后在Adam优化的卷积神经网络中对输入图像进行特征提取和非线性映射得到特征映射图,最后在Adam优化的卷积神经网络中对特征映射图进行反卷积重建得到多尺度放大的重建图像。通过实验验证使用该方法在不同放大倍数条件下的重构效果优于传统算法,在视觉效果上有较好的表现。
关键词
超分辨率重建
卷积神经网络(CNN)
ISODATA聚类算法
Adam优化算法
Keywords
super-resolution reconstruction
convolution neural network (CNN)
iterative selforganizing data analysis (ISODATA)clusteringalgorithm
adamoptimizationalgorithm
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Adam优化的CNN超分辨率重建
赵小强
宋昭漾
《计算机科学与探索》
CSCD
北大核心
2019
33
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部