期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:1
1
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
2
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
3
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 Arithmetic optimization algorithm adaptive Balance Factor Spiral search Brownian Motion Whale Fall Mechanism
下载PDF
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:2
4
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production optimization efficiency Streamline simulation Streamline feature Objective function Bayesian adaptive direct search algorithm
下载PDF
A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems 被引量:7
5
作者 Andi Tang Huan Zhou +1 位作者 Tong Han Lei Xie 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期331-364,共34页
The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe... The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms. 展开更多
关键词 Sparrow search algorithm global optimization adaptive step benchmark function chaos map
下载PDF
An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size
6
作者 Ala Kana Imtiaz Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第9期3443-3464,共22页
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int... A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications. 展开更多
关键词 optimization Runge Kutta(RUN) metaheuristic algorithm exploration EXPLOITATION population size adaptation adaptive search step size
下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
7
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-adaptive numerical optimization evolutionary al-gorithm stochastic search algorithm.
下载PDF
Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels 被引量:2
8
作者 Xiangzhen Zhou Wei Hu +3 位作者 Zhongyong Zhang Junneng Ye Chuang Zhao Xuecheng Bian 《Underground Space》 SCIE EI CSCD 2024年第4期320-360,共41页
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ... A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures. 展开更多
关键词 Adjacent deep excavations Existing subway tunnels adaptive mutation sparrow search algorithm Metaheuristic optimization Benchmark test functions Elman neural networks
原文传递
非合作博弈背景下基于BSA的配电网优化重构 被引量:1
9
作者 李奇 艾钰璇 +2 位作者 孙彩 邱宜彬 陈维荣 《西南交通大学学报》 EI CSCD 北大核心 2024年第2期438-446,共9页
为缓解分布式电源大规模接入对配电网安全稳定运行的影响,提出一种考虑分布式电源输出功率的不确定性的有源配电网优化重构方法.首先,采用非合作博弈理论研究电网调度人员与“大自然”之间的博弈关系,将配电网系统中光伏单元的不确定性... 为缓解分布式电源大规模接入对配电网安全稳定运行的影响,提出一种考虑分布式电源输出功率的不确定性的有源配电网优化重构方法.首先,采用非合作博弈理论研究电网调度人员与“大自然”之间的博弈关系,将配电网系统中光伏单元的不确定性视为“大自然”博弈方;其次,以有功网损、负荷均衡度、电压偏差最小为目标函数,建立有源配电网优化重构模型,通过回溯搜索算法(backtracking search algorithm,BSA)进行迭代求解,得到最优重构方案;最后,在IEEE33节点系统进行仿真分析,验证模型的正确性及求解算法的有效性.研究结果表明,相较传统重构方法,本文方法更充分考虑了分布式电源输出功率的不确定性,并且在最恶劣的情况发生时,得到的重构策略能够使配电网系统的有功网损、负荷均衡度、电压偏差指标分别降低0.31%、0.59%、0.48%. 展开更多
关键词 配电网 优化重构 不确定性 非合作博弈 回溯搜索算法
下载PDF
Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search
10
作者 Yaren Aydın Gebrail Bekdas +1 位作者 Sinan Melih Nigdeli Zong Woo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2471-2499,共29页
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ... Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems. 展开更多
关键词 Passive control optimum design parameter optimization tuned mass damper inerter time domain adaptive harmony search algorithm
下载PDF
双区型仓库订单分批与拣选协同优化研究
11
作者 张艳菊 李群 +1 位作者 张彭涵 李蕊 《计算机应用研究》 CSCD 北大核心 2024年第3期746-755,共10页
针对订单分拣效率低下导致商品出库缓慢的问题,提出一种基于双区型仓库订单分批与拣选的协同优化模型,设计求解模型的CWDP-BSA(clarke-wright and dynamic programming&backtracking search algorithm)协同优化算法。在节约算法中... 针对订单分拣效率低下导致商品出库缓慢的问题,提出一种基于双区型仓库订单分批与拣选的协同优化模型,设计求解模型的CWDP-BSA(clarke-wright and dynamic programming&backtracking search algorithm)协同优化算法。在节约算法中引入快速排序法对订单组合的距离节约值排序,考虑AGV承载量,运用多阶段决策过程最优策略得出状态转移方程求解订单分批模型,确定初始分批方案;并采取多因子选择的回溯搜索算法求解拣选路径模型,以此确定初始拣选方案。再以以上两方案为基础,建立新的基于订单时间窗的订单分批和拣选协同优化模型并求解,进一步优化订单分批和拣选方案。最后通过对比实验得出,平均每批次订单的拣选距离减少了约24.56%,优化后的拣选时间比优化前缩短了约11.4%,在求解不同规模算例时,CWDP-BSA算法的求解结果优于CPLEX软件和其他算法,验证了模型与算法的稳定性和有效性。实验表明,协同优化后的订单分批与物品拣选策略能够有效提升订单出库效率。 展开更多
关键词 双区型仓库 订单分批拣选 协同优化 节约算法 回溯搜索优化算法 CWDP-BSA算法
下载PDF
基于改进鼠群优化算法的起重机主梁轻量化设计
12
作者 林伟 朱豪洋 《机械设计》 CSCD 北大核心 2024年第4期131-139,共9页
为提高元启发式算法求解桥式起重机主梁优化问题的寻优精度与效率,文中提出一种改进的鼠群优化算法(IRSO)。该算法采用Hénon混沌随机反向学习初始化种群,提高算法的初始寻优性能;在追逐行为中,引入随机反向学习和高斯变异混合策略... 为提高元启发式算法求解桥式起重机主梁优化问题的寻优精度与效率,文中提出一种改进的鼠群优化算法(IRSO)。该算法采用Hénon混沌随机反向学习初始化种群,提高算法的初始寻优性能;在追逐行为中,引入随机反向学习和高斯变异混合策略对鼠群进行逐维学习,增强算法的全局搜索能力;在搏斗行为中,采用翻筋斗搏斗搜索策略更新鼠群位置,增强算法的局部搜索能力;在算法中引入自适应余弦控制因子,实现算法控制参数之间的动态平衡,提高算法的整体寻优能力。仿真结果表明:与其他算法相比,IRSO算法寻优能力更优、收敛精度更高、稳定性和鲁棒性更强;同时,IRSO算法可高效地解决桥式起重机主梁轻量化设计问题,减重效果可达20.72%,具有较好的工程实际应用能力。 展开更多
关键词 鼠群优化算法 Hénon混沌 随机反向学习 翻筋斗搏斗策略 自适应余弦控制因子 主梁轻量化设计
下载PDF
基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化 被引量:3
13
作者 韦修喜 彭茂松 黄华娟 《计算机应用》 CSCD 北大核心 2024年第4期1009-1017,共9页
针对无线传感网络(WSN)的节点覆盖存在着覆盖率低、节点分布不均匀的问题,提出一种基于多策略改进的蝴蝶优化算法(MIBOA)的节点覆盖优化策略。首先,将基础的蝴蝶优化算法(BOA)与麻雀搜索算法(SSA)结合改进搜索过程;其次,引入自适应权重... 针对无线传感网络(WSN)的节点覆盖存在着覆盖率低、节点分布不均匀的问题,提出一种基于多策略改进的蝴蝶优化算法(MIBOA)的节点覆盖优化策略。首先,将基础的蝴蝶优化算法(BOA)与麻雀搜索算法(SSA)结合改进搜索过程;其次,引入自适应权重系数提高寻优精度和收敛速度;最后,对当前最优个体进行柯西变异扰动,提高算法鲁棒性。基准测试函数的寻优实验结果说明,MIBOA基本可在3 s内求解测试函数最优值,且收敛平均值精度较BOA提高了97.96%。将MIBOA应用于WSN节点覆盖优化问题,与BOA和SSA相比,节点覆盖率至少提高了3.63个百分点;与改进灰狼优化算法(IGWO)相比,部署时间缩短了145.82 s;与改进鲸群优化算法(IWOA)相比,节点覆盖率提高了0.20个百分点且时间缩短了1112.61 s。综上,MIBOA可较好提高节点覆盖率并降低冗余覆盖率,有效延长WSN的生存时间。 展开更多
关键词 蝴蝶优化算法 麻雀搜索算法 自适应权重系数 无线传感网络 节点覆盖率
下载PDF
考虑碳交易机制的海港综合能源系统电-热混合储能优化配置 被引量:1
14
作者 林森 文书礼 +4 位作者 朱淼 戴群 鄢伦 赵耀 叶惠丽 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第9期1344-1356,共13页
随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建... 随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建立海港综合能源系统模型,并给出计及碳交易市场的交易方案;其次,构建双层优化配置框架,上层优化配置混合式储能容量,下层引入碳交易机制,满足港口综合能源系统低碳经济运行需求;最后,结合网格自适应直接搜索法与自适应混沌粒子群算法优势,利用混合式优化算法对双层优化模型进行求解.以天津港的实际运行数据为例,验证该方法的有效性.算例结果表明,所提方法不仅可以降低系统的投入成本,还能显著减少港区碳排放,从而进一步提升港口经济和环境效益. 展开更多
关键词 海港综合能源系统 碳交易机制 混合储能 网格自适应直接搜索算法 自适应混沌粒子群算法
下载PDF
基于对称映射搜索策略的自适应金鹰算法及应用 被引量:1
15
作者 周徐虎 李世港 +1 位作者 罗仪 张伟 《电子科技》 2024年第8期8-16,25,共10页
金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基... 金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基础上采用对称映射搜索策略、自适应精英策略和随机反向学习机制这3种方法平衡了算法的探索和开发阶段,获得了规避局部最优能力和较好的优化精度。在10个基准测试函数上对该算法进行独立策略有效性分析、可扩展性分析以及同其他算法的优化性能比较分析。实验结果表明,改进后的MERGEO算法具有较强的竞争力和良好的优化能力。将改进后的算法用于无线传感器网络的覆盖优化问题和压力容器设计问题研究,验证了其实际应用价值。 展开更多
关键词 金鹰优化算法 元启发式算法 对称映射搜索策略 自适应精英策略 随机反向学习 可扩展性分析 无线传感器网络的覆盖优化 压力容器设计
下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用
16
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子群优化 进化算法 NAS-Bench-101 自适应的协作学习算法
下载PDF
融合松鼠搜索策略的混沌飞蛾算法
17
作者 张帅 叶小华 黄建中 《计算机工程与应用》 CSCD 北大核心 2024年第21期99-115,共17页
飞蛾算法是一种结构简单、配置参数少且适用范围广的群智能算法,但在收敛精度和收敛速度等方面还有待提高,且存在易收敛到局部最优的问题,为此提出一种融合松鼠搜索策略的混沌飞蛾算法。该策略采用sinusoidal混沌映射获取高质量初始种群... 飞蛾算法是一种结构简单、配置参数少且适用范围广的群智能算法,但在收敛精度和收敛速度等方面还有待提高,且存在易收敛到局部最优的问题,为此提出一种融合松鼠搜索策略的混沌飞蛾算法。该策略采用sinusoidal混沌映射获取高质量初始种群;在飞蛾寻优过程中引入松鼠算法中松鼠的寻优途径,设置高质量火焰个体与近距离火焰个体指导飞蛾高质量寻优,通过余弦控制因子触发的捕食者概率促使飞蛾跳出原始火焰对其的吸引,提高飞蛾算法全局搜索能力;改造自适应t分布因子与火焰自适应减少公式,控制适应度较差的种群通过列维飞行进行随机迁移,增加算法的局部搜索能力。通过CEC2017测试集、CEC2022测试集与两个工程应用实例分别与其他15种智能算法进行对比验证,结果表明改进算法在收敛速度、搜索能力和跳出局部最优等方面具有一定优势。 展开更多
关键词 飞蛾优化算法 松鼠优化算法 自适应控制因子 列维飞行
下载PDF
混合多项自适应权重的混沌麻雀搜索算法 被引量:4
18
作者 杜云 周志奇 +2 位作者 贾科进 丁力 卢孟杨林 《计算机工程与应用》 CSCD 北大核心 2024年第7期70-83,共14页
麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提... 麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提高发现者的全局搜索能力和搜索范围;在加入者引入改进鲸鱼优化算法的气泡网捕食策略,提高算法的局部搜索性能和跳出局部最优的能力;结合反向学习策略机制,对所有的个体进行最优选择,使每次迭代后的个体质量得到提升,以提高算法的寻优效率和寻优精度。将混合多项自适应权重的混沌麻雀搜索算法与4种经典基本算法和9种改进的麻雀搜索算法在12种测试函数和CEC2022测试函数上进行对比,改进算法有更好的寻优性能和收敛速度。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 自适应权重 鲸鱼优化算法 反向学习
下载PDF
站点可变型需求响应式公交车辆调度优化研究
19
作者 沈子康 靳文舟 郑亚晶 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第6期691-702,I0006,I0007,共14页
站点可变型需求响应式公交是一种既有固定服务站点又允许乘客在可变站点预约的公交运营模式.传统研究聚焦于单个车次的行程规划,而忽视车辆在整个运营周期执行多个车次的接续性.本研究从系统视角建立单个运营周期内车辆发车时刻表编制... 站点可变型需求响应式公交是一种既有固定服务站点又允许乘客在可变站点预约的公交运营模式.传统研究聚焦于单个车次的行程规划,而忽视车辆在整个运营周期执行多个车次的接续性.本研究从系统视角建立单个运营周期内车辆发车时刻表编制和车辆调度协同优化模型,以总成本最小化为目标,构建时空网络图,清晰表达站点可变型需求响应式公交的服务逻辑和复杂的时空约束.同时根据问题特征,整合8类邻域算子和改进的最大网络流算法,设计可快速求解现实大规模复杂问题的自适应变邻域搜索算法.以中国广州市黄埔区部分路网为例进行数值实验,结果表明,相比传统两阶段车辆调度模型,本模型车辆使用率提高8.7%以上,总成本下降20%~70%;相比传统算法,在绝大多数订单规模下自适应变邻域搜索算法求解质量更优,在预约订单规模为60时,可节省总成本30%以上. 展开更多
关键词 交通运输工程 需求响应式公交 发车时刻表 车辆调度问题 协同优化 自适应变邻域搜索算法
下载PDF
考虑需求响应的微电网最优经济运行及改进人工蜂群算法
20
作者 杨森 张寿明 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期630-641,共12页
为降低微电网并网对大电网的影响并降低微电网的发电成本,提出一种基于负荷转移的激励型需求响应微电网最优经济运行模型.在此基础上,针对人工蜂群算法寻优精度不高、易陷入局部最优等不足,提出一种多策略改进人工蜂群算法.首先,提出双... 为降低微电网并网对大电网的影响并降低微电网的发电成本,提出一种基于负荷转移的激励型需求响应微电网最优经济运行模型.在此基础上,针对人工蜂群算法寻优精度不高、易陷入局部最优等不足,提出一种多策略改进人工蜂群算法.首先,提出双精英个体引导的新搜索方程降低搜索的随机性和盲目性;其次,提出免疫-提前自适应转换机制,平衡全局搜索性能和局部开发能力;最后,引入基于Levy飞行的变邻域搜索策略,强化算法跳出局部最优的能力,通过仿真实例验证了所提模型和算法的可行性和有效性.试验结果表明,所提模型实现削峰填谷的同时可以有效降低发电成本;通过与其他算法在微电网算例上收敛速度和寻优精度的比较,验证了多策略改进人工蜂群算法的优越性. 展开更多
关键词 微电网 需求响应 最优经济运行 人工蜂群算法 搜索方程 自适应转换
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部