期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
A Hybrid Brain-Computer Interface for Closed-Loop Position Control of a Robot Arm 被引量:7
1
作者 Arnab Rakshit Amit Konar Atulya K.Nagar 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1344-1360,共17页
Brain-Computer interfacing(BCI)has currently added a new dimension in assistive robotics.Existing braincomputer interfaces designed for position control applications suffer from two fundamental limitations.First,most ... Brain-Computer interfacing(BCI)has currently added a new dimension in assistive robotics.Existing braincomputer interfaces designed for position control applications suffer from two fundamental limitations.First,most of the existing schemes employ open-loop control,and thus are unable to track positional errors,resulting in failures in taking necessary online corrective actions.There are examples of a few works dealing with closed-loop electroencephalography(EEG)-based position control.These existing closed-loop brain-induced position control schemes employ a fixed order link selection rule,which often creates a bottleneck preventing time-efficient control.Second,the existing brain-induced position controllers are designed to generate a position response like a traditional firstorder system,resulting in a large steady-state error.This paper overcomes the above two limitations by keeping provisions for steady-state visual evoked potential(SSVEP)induced linkselection in an arbitrary order as required for efficient control and generating a second-order response of the position-control system with gradually diminishing overshoots/undershoots to reduce steady-state errors.Other than the above,the third innovation is to utilize motor imagery and P300 signals to design the hybrid brain-computer interfacing system for the said application with gradually diminishing error-margin using speed reversal at the zero-crossings of positional errors.Experiments undertaken reveal that the steady-state error is reduced to 0.2%.The paper also provides a thorough analysis of the stability of the closed-loop system performance using the Root Locus technique. 展开更多
关键词 brain-computer interfacing(bci) electroencepha-lography(EEG) Jaco robot arm motor imagery P300 steady-state visually evoked potential(SSVEP)
下载PDF
Electric Wheelchair Control System Using Brain-Computer Interface Based on Alpha-Wave Blocking 被引量:2
2
作者 明东 付兰 +8 位作者 陈龙 汤佳贝 綦宏志 赵欣 周鹏 张力新 焦学军 王春慧 万柏坤 《Transactions of Tianjin University》 EI CAS 2014年第5期358-363,共6页
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control... A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min. 展开更多
关键词 electric wheelchair alpha-wave blocking brain-computer interface bci success control rate
下载PDF
Non-invasive EEG-based brain-computer interfaces in patients with disorders of consciousness 被引量:1
3
作者 Emilia Mikoajewska Dariusz Mikoajewski 《Journal of Medical Colleges of PLA(China)》 CAS 2014年第2期109-114,共6页
Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for re... Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for relevant patients with DoCs assessment, including brain-computer interfaces(BCIs). Recent progress in BCIs' clinical applications may offer important breakthroughs in the diagnosis and therapy of patients with DoCs. Thus the clinical significance of BCI applications in the diagnosis of patients with DoCs is hard to overestimate. One of them may be brain-computer interfaces. The aim of this study is to evaluate possibility of non-invasive EEG-based brain-computer interfaces in diagnosis of patients with DOCs in post-acute and long-term care institutions. 展开更多
关键词 neurological disorders disorders of consciousness brain-computer interfaces EEG-based bcis
下载PDF
Individualization of Data-Segment-Related Parameters for Improvement of EEG Signal Classification in Brain-Computer Interface 被引量:1
4
作者 曹红宝 BESIO Walter G +1 位作者 JONES Steven 周鹏 《Transactions of Tianjin University》 EI CAS 2010年第3期235-238,共4页
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in... In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI. 展开更多
关键词 data segment parameter selection EEG classification brain-computer interface bci
下载PDF
Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
5
作者 Yu Zhang Huaqing Li +3 位作者 Heng Dong Zheng Dai Xing Chen Zhuoming Li 《China Communications》 SCIE CSCD 2022年第2期39-46,共8页
The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal... The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal and the changes of the experimental environment make the feature distribution of the testing set and training set deviates,which reduces the classification accuracy of MI-BCI.In this paper,we propose a Kullback–Leibler divergence(KL)-based transfer learning algorithm to solve the problem of feature transfer,the proposed algorithm uses KL to measure the similarity between the training set and the testing set,adds support vector machine(SVM)classification probability to classify and weight the covariance,and discards the poorly performing samples.The results show that the proposed algorithm can significantly improve the classification accuracy of the testing set compared with the traditional algorithms,especially for subjects with medium classification accuracy.Moreover,the algorithm based on transfer learning has the potential to improve the consistency of feature distribution that the traditional algorithms do not have,which is significant for the application of MI-BCI. 展开更多
关键词 brain-computer interface motor imagery feature transfer transfer learning domain adaptation
下载PDF
Performance and Implementations of Vibrotactile Brain-Computer Interface with Ipsilateral and Bilateral Stimuli
6
作者 SUN Hongyan JIN Jing +2 位作者 ZHANG Yu WANG Bei WANG Xingyu 《Journal of Donghua University(English Edition)》 EI CAS 2018年第6期439-445,共7页
The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile st... The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile stimuli delivered to different parts of the human body. Most of these stimuli were symmetrically bilateral.Only a fewstudies explored the influence of tactile stimuli laterality.In the current study,we extensively tested the performance of a vibrotactile BCI system using ipsilateral stimuli and bilateral stimuli.Two vibrotactile P300-based paradigms were tested. The target stimuli were located on the left and right forearms for the left forearm and right forearm( LFRF) paradigm,and on the left forearm and calf for the left forearm and left calf( LFLC)paradigm. Ten healthy subjects participated in this study. Our experiments and analysis showed that the bilateral paradigm( LFRF) elicited larger P300 amplitude and achieved significantly higher classification accuracy than the ipsilateral paradigm( LFLC). However, both paradigms achieved classification accuracies higher than 70% after the completion of several trials on average,which was usually regarded as the minimum accuracy level required for BCI system to be deemed useful. 展开更多
关键词 brain-computer interface (bci) tactile P300 IPSILATERAL stimuli BILATERAL stimuli paradigm LEFT FOREARM right FOREARM LEFT CALF
下载PDF
Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface
7
作者 REN Min XU Renyu ZHU Ting 《ZTE Communications》 2023年第3期3-10,共8页
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec... Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics. 展开更多
关键词 brain-computer interface(bci) electroencephalogram(EEG) deep reinforcement learning(Deep RL) motion imaging(MI)generalizability
下载PDF
Design of an EEG Preamplifier for Brain-Computer Interface
8
作者 Xian-Jie Pu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期56-60,共5页
As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier i... As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future. 展开更多
关键词 brain-computer interface(bci) electroencephalogram(EEG) FILTERING interference pre amplifier.
下载PDF
SSVEP-BCI抗自由眨眼稳定性的ANFIS方法 被引量:1
9
作者 陆竹风 张小栋 +2 位作者 张黎明 李瀚哲 李睿 《振动.测试与诊断》 EI CSCD 北大核心 2019年第4期727-732,901,共7页
针对伪迹干扰下脑机接口稳定性问题,以自由眨眼动作下稳态视觉诱发脑机接口的稳定性为切入点,进行了稳态视觉诱发脑电信号去眼电伪迹(electroculography,简称EOG)研究。提出了一种基于自适应神经模糊推理系统(adaptive neuro-fuzzy infe... 针对伪迹干扰下脑机接口稳定性问题,以自由眨眼动作下稳态视觉诱发脑机接口的稳定性为切入点,进行了稳态视觉诱发脑电信号去眼电伪迹(electroculography,简称EOG)研究。提出了一种基于自适应神经模糊推理系统(adaptive neuro-fuzzy inferency system,简称ANFIS)的无眼电电极下脑电信号眼电伪迹的自适应消除方法并进行实验,验证该方法对自由眨眼动作下稳态视觉诱发脑机接口稳定性的提高。该伪迹消除方法通过自适应神经模糊推理系统逼近眼电信号源至眼电伪迹的非线性变换函数,达到消除脑电信号中眼电伪迹的目的。算法通过前额叶区脑电信号获得替代性眼电信号源,经延时处理后,输入自适应噪声消除器中以消除各通道脑电信号中的眼电伪迹。通过自由眨眼动作下稳态视觉刺激实验,对该伪迹消除方法中各参数及函数的选择进行了研究,并将该方法与经典滤波和传统独立成分分析(independent component analysis,简称ICA)进行对比,证明了该方法在消除眼电伪迹的情况下保留了稳态视觉刺激的有效信息,识别正确率较经典滤波相比最高提高了6.25%,较传统ICA相比最高提高10%,保证了稳态视觉诱发脑机接口在自由眨眼动作下的稳定性。 展开更多
关键词 脑机接口 脑电信号 稳态视觉诱发脑电信号 眼电伪迹 自适应神经模糊推理系统
下载PDF
Asynchronous Brain-Computer Interface Shared Control of Robotic Grasping 被引量:8
10
作者 Wenchang Zhang Fuchun Sun +2 位作者 Hang Wu Chuanqi Tan Yuzhen Ma 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第3期360-370,共11页
The control of a high Degree of Freedom(DoF) robot to grasp a target in three-dimensional space using Brain-Computer Interface(BCI) remains a very difficult problem to solve. Design of synchronous BCI requires the use... The control of a high Degree of Freedom(DoF) robot to grasp a target in three-dimensional space using Brain-Computer Interface(BCI) remains a very difficult problem to solve. Design of synchronous BCI requires the user perform the brain activity task all the time according to the predefined paradigm; such a process is boring and fatiguing. Furthermore, the strategy of switching between robotic auto-control and BCI control is not very reliable because the accuracy of Motor Imagery(MI) pattern recognition rarely reaches 100%. In this paper, an asynchronous BCI shared control method is proposed for the high DoF robotic grasping task. The proposed method combines BCI control and automatic robotic control to simultaneously consider the robotic vision feedback and revise the unreasonable control commands. The user can easily mentally control the system and is only required to intervene and send brain commands to the automatic control system at the appropriate time according to the experience of the user. Two experiments are designed to validate our method: one aims to illustrate the accuracy of MI pattern recognition of our asynchronous BCI system; the other is the online practical experiment that controls the robot to grasp a target while avoiding an obstacle using the asynchronous BCI shared control method that can improve the safety and robustness of our system. 展开更多
关键词 ASYNCHRONOUS brain-computer interface (bci) SHARED control motor IMAGERY ROBOTIC GRASPING
原文传递
A P300 based online brain-computer interface system for virtual hand control 被引量:3
11
作者 Wei-dong CHEN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第8期587-597,共11页
Brain-computer interface (BCI) is a communication system that can help lock-in patients to interact with the outside environment by translating brain signals into machine commands.The present work provides a design fo... Brain-computer interface (BCI) is a communication system that can help lock-in patients to interact with the outside environment by translating brain signals into machine commands.The present work provides a design for a virtual reality (VR) based BCI system that allows human participants to control a virtual hand to make gestures by P300 signals,with a positive peak of potential about 300 ms posterior to the onset of target stimulus.In this virtual environment,the participants can obtain a more immersed experience with the BCI system,such as controlling a virtual hand or walking around in the virtual world.Methods of modeling the virtual hand and analyzing the P300 signals are also described in detail.Template matching and support vector machine were used as the P300 classifier and the experiment results showed that both algorithms perform well in the system.After a short time of practice,most participants could learn to control the virtual hand during the online experiment with greater than 70% accuracy. 展开更多
关键词 brain-computer interface (bci) Electroencephalography (EEG) P300 Virtual reality (VR) Template matching Support vector machine (SVM)
原文传递
A hybrid brain-computer interface control strategy in a virtual environment 被引量:2
12
作者 Yu SU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第5期351-361,共11页
This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The ... This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment. 展开更多
关键词 Hybrid brain-computer interface (bci) control strategy P300 potential Sensorimotor rhythms Virtual environment
原文传递
Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface 被引量:1
13
作者 Bang-hua YANG Liang-fei HE Lin LIN Qian WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期486-496,共11页
Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interferenc... Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction. 展开更多
关键词 Ocular artifacts Electroencephalogram (EEG) Electrooculogram (EOG) brain-computer interface bci Spatialconstraint independent component analysis based recursive least squares (SCICA-RLS)
原文传递
A review of artificial intelligence for EEG-based brain-computer interfaces and applications 被引量:3
14
作者 Zehong Cao 《Brain Science Advances》 2020年第3期162-170,共9页
The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment,making brain–computer interface(BCI)top interdisciplinary research.Further... The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment,making brain–computer interface(BCI)top interdisciplinary research.Furthermore,with the modern technology advancement in artificial intelligence(AI),including machine learning(ML)and deep learning(DL)methods,there is vast growing interest in the electroencephalogram(EEG)-based BCIs for AI-related visual,literal,and motion applications.In this review study,the literature on mainstreams of AI for the EEG-based BCI applications is investigated to fill gaps in the interdisciplinary BCI field.Specifically,the EEG signals and their main applications in BCI are first briefly introduced.Next,the latest AI technologies,including the ML and DL models,are presented to monitor and feedback human cognitive states.Finally,some BCI-inspired AI applications,including computer vision,natural language processing,and robotic control applications,are presented.The future research directions of the EEG-based BCI are highlighted in line with the AI technologies and applications. 展开更多
关键词 electroencephalogram(EEG) brain-computer interface(bci) artificial intelligence computer vision natural language processing robot controls
原文传递
15 Years of Evolution of Non-Invasive EEG-Based Methods for Restoring Hand &Arm Function with Motor Neuroprosthetics in Individuals with High Spinal Cord Injury: A Review of Graz BCI Research 被引量:1
15
作者 Gernot R. Müller-Putz Philipp Plank +2 位作者 Bernhard Stadlbauer Karina Statthaler John Bosco Uroko 《Journal of Biomedical Science and Engineering》 2017年第6期317-325,共9页
Patients who suffer from a high spinal cord injury have severe motor disabilities in the lower as well as in the upper extremities. Thus they rely on the help of other people in everyday life. Restoring the function o... Patients who suffer from a high spinal cord injury have severe motor disabilities in the lower as well as in the upper extremities. Thus they rely on the help of other people in everyday life. Restoring the function of the upper limbs, especially the grasp function can help them to gain some independence. Using EEG-based neuroprosthetics is a way to help tetraplegic people restore different grasp types as well as moving the arm and the elbow. In this work an overview of non-invasive EEG-based methods for restoring the hand and arm function with the use of neuroprosthetics in individuals with high spinal cord injury is given. Since the Graz BCI group is leading in this area of non-invasive research mainly, the work of this group is represented. 展开更多
关键词 ELECTROENCEPHALOGRAM (EEG) brain-computer interface (bci) MOTOR NEUROPROSTHESIS Spinal Cord Injury (SCI)
下载PDF
Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions 被引量:1
16
作者 Rui Zhang Fali Li +2 位作者 Tao Zhang Dezhong Yao Peng Xu 《Brain Science Advances》 2020年第3期224-241,共18页
Motor imagery brain–computer interfaces(MI-BCIs)have great potential value in prosthetics control,neurorehabilitation,and gaming;however,currently,most such systems only operate in controlled laboratory environments.... Motor imagery brain–computer interfaces(MI-BCIs)have great potential value in prosthetics control,neurorehabilitation,and gaming;however,currently,most such systems only operate in controlled laboratory environments.One of the most important obstacles is the MI-BCI inefficiency phenomenon.The accuracy of MI-BCI control varies significantly(from chance level to 100%accuracy)across subjects due to the not easily induced and unstable MI-related EEG features.An MI-BCI inefficient subject is defined as a subject who cannot achieve greater than 70%accuracy after sufficient training time,and multiple survey results indicate that inefficient subjects account for 10%–50%of the experimental population.The widespread use of MI-BCI has been seriously limited due to these large percentages of inefficient subjects.In this review,we summarize recent findings of the cause of MI-BCI inefficiency from resting-state brain function,task-related brain activity,brain structure,and psychological perspectives.These factors help understand the reasons for inter-subject MI-BCI control performance variability,and it can be concluded that the lower resting-state sensorimotor rhythm(SMR)is the key factor in MI-BCI inefficiency,which has been confirmed by multiple independent laboratories.We then propose to divide MI-BCI inefficient subjects into three categories according to the resting-state SMR and offline/online accuracy to apply more accurate approaches to solve the inefficiency problem.The potential solutions include developing transfer learning algorithms,new experimental paradigms,mindfulness meditation practice,novel training strategies,and identifying new motor imagery-related EEG features.To date,few studies have focused on improving the control accuracy of MI-BCI inefficient subjects;thus,we appeal to the BCI community to focus more on this research area.Only by reducing the percentage of inefficient subjects can we create the opportunity to expand the value and influence of MI-BCI. 展开更多
关键词 motor imagery brain-computer interface(MI-bci) inefficient bci user EEG indicator brain structure transfer learning
原文传递
Electroencephalogram-based brain-computer interface for the Chinese spelling system: a survey
17
作者 Ming-hui SHI Chang-le ZHOU +8 位作者 Jun XIE Shao-zi LI Qing-yang HONG Min JIANG Fei CHAO Wei-feng REN Xiang-qian LIU Da-jun ZHOU Tian-yu YANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第3期423-436,共14页
Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscle... Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscles. A popular application for EEGs is the EEG-based speller, which translates EEG signals into intentions to spell particular words, thus benefiting those suffering from severe disabilities, such as amyotrophic lateral sclerosis. Although the EEG-based English speller (EEGES) has been widely studied in recent years, few studies have focused on the EEG-based Chinese speller (EEGCS). The EEGCS is more difficult to develop than the EEGES, because the English alphabet contains only 26 letters. By contrast, Chinese contains more than 11000 logographic characters. The goal of this paper is to survey the literature on EEGCS systems. First, the taxonomy of current EEGCS systems is discussed to get the gist of the paper. Then, a common framework unifying the current EEGCS and EEGES systems is proposed, in which the concept of EEG-based choice acts as a core component. In addition, a variety of current EEGCS systems are investigated and discussed to highlight the advances, current problems, and future directions for EEGCS. 展开更多
关键词 brain-computer interfacebci Electroencephalography(EEG) Chinese speller English speller
原文传递
Motor imaginary-based BCI for controlling a remote car
18
作者 孙红雨 向阳 +1 位作者 孙杳如 戴宜雯 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期200-204,共5页
This paper presents the application of an effective electroencephalogram(EEG)based brain-computer interface(BCI)for controlling a remote car in a practical environment.The BCI uses the motor imaginary to translate the... This paper presents the application of an effective electroencephalogram(EEG)based brain-computer interface(BCI)for controlling a remote car in a practical environment.The BCI uses the motor imaginary to translate the subject’s motor intention into a control signal through classifying EEG patterns of different imaginary tasks.The system is composed of a remote car,a digital signal processor and a wireless data transfer module.The performance of the BCI was found to be robust to distract motor imaginary in the remote car controlling and need a short training time.The experimental results indicate that the successful ternary-control by using motor imaginry may be practicable in an uncontrolled environment. 展开更多
关键词 electroencephalogram(EEG) brain-computer interface(bci) MOTOR imaginary online classification
下载PDF
Multimodal collaborative BCI system based on the improved CSP feature extraction algorithm
19
作者 Cunbo LI Ning LI +7 位作者 Yuan QIU Yueheng PENG Yifeng WANG Lili DENG Teng MA Fali LI Dezhong YAO Peng XU 《Virtual Reality & Intelligent Hardware》 EI 2022年第1期22-37,共16页
Background As a novel approach for people to directly communicate with an external device,the study of brain-computer interfaces(BCIs)has become well-rounded.However,similar to the real-world scenario,where individual... Background As a novel approach for people to directly communicate with an external device,the study of brain-computer interfaces(BCIs)has become well-rounded.However,similar to the real-world scenario,where individuals are expected to work in groups,the BCI systems should be able to replicate group attributes.Methods We proposed a 4-order cumulants feature extraction method(CUM4-CSP)based on the common spatial patterns(CSP)algorithm.Simulation experiments conducted using motion visual evoked potentials(mVEP)EEG data verified the robustness of the proposed algorithm.In addition,to freely choose paradigms,we adopted the mVEP and steady-state visual evoked potential(SSVEP)paradigms and designed a multimodal collaborative BCI system based on the proposed CUM4-CSP algorithm.The feasibility of the proposed multimodal collaborative system framework was demonstrated using a multiplayer game controlling system that simultaneously facilitates the coordination and competitive control of two users on external devices.To verify the robustness of the proposed scheme,we recruited 30 subjects to conduct online game control experiments,and the results were statistically analyzed.Results The simulation results prove that the proposed CUM4-CSP algorithm has good noise immunity.The online experimental results indicate that the subjects could reliably perform the game confrontation operation with the selected BCI paradigm.Conclusions The proposed CUM4-CSP algorithm can effectively extract features from EEG data in a noisy environment.Additionally,the proposed scheme may provide a new solution for EEG-based group BCI research. 展开更多
关键词 Collaborative brain-computer interface(bci) Motion visual evoked potentials(mVEP) Steady-state visual evoked potential(SSVEP) Game controlling system
下载PDF
A Study of BCI Signal Pattern Recognition by Using Quasi-Newton-SVM Method
20
作者 YANG Chang-chun MA Zheng-hua SUN Yu-qiang ZOU Ling 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第4期171-177,共7页
The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on t... The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well-defined physiological signal which also has a smooth form "hides" inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Firstly, the EEG signals were preprocessed by Quasi-Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors. 展开更多
关键词 brain-computer interface (bci) EEG Support VECTOR MACHINE (SVM) QUASI-NEWTON method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部