The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this ...To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.展开更多
The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are t...The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.展开更多
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
基金This work is funded by Hung Yen University of Technology and Education and Industrial University of Ho Chi Minh City.
文摘To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.
文摘The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.