期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
1
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system (ANFIS) complex social-technical system organizational efficiency
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
2
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
3
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
下载PDF
Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank 被引量:3
4
作者 Jalil Pazhoohan Hossein Beiki Morteza EsfANDyari 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期538-546,共9页
The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt... The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt% in water. The measurements revealed that adding sulfuric acid all at once to the tank rapidly increased the efficiency of the leaching process, which was attributed to the rapid change in the acid concentration. The rate of iron dissolution from tailings was less than when the acid was added gradually. The sample with 40 wt% solid is recommended as an appropriate feed for the recovery of copper. The adaptive neural fuzzy system(ANFIS) was also used to predict the copper recovery from flotation tailings. The back-propagation algorithm and least squares method were applied for the training of ANFIS. The validation data was also applied to evaluate the performance of these models. Simulation results revealed that the testing results from these models were in good agreement with the experimental data. 展开更多
关键词 FLOTATION TAILINGS LEACHING copper environments adaptive neural fuzzy inference system
下载PDF
Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System 被引量:4
5
作者 曹政才 邓积杰 +1 位作者 刘民 王永吉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1081-1088,共8页
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon... Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method. 展开更多
关键词 semiconductor manufacturing system bottleneck prediction adaptive network-based fuzzy inference system
下载PDF
Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System 被引量:3
6
作者 S.M.Khazraee A.H.Jahanmiri 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期703-710,共8页
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla... Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme. 展开更多
关键词 reactive batch distillation MULTICOMPONENT pilot plant adaptive neuro-fuzzy inference system state estimation
下载PDF
Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system 被引量:1
7
作者 Mahdi Alizadeh Omid Haji Maghsoudi +3 位作者 Kaveh Sharzehi Hamid Reza Hemati Alireza Kamali Asl Alireza Talebpour 《The Journal of Biomedical Research》 CAS CSCD 2017年第5期419-427,共9页
Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing met... Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images. 展开更多
关键词 adaptive neuro-fuzzy inference system co-occurrence matrix wireless capsule endoscopy texture feature
下载PDF
A reversibly used cooling tower with adaptive neuro-fuzzy inference system 被引量:2
8
作者 吴加胜 张国强 +3 位作者 张泉 周晋 郭永辉 沈炜 《Journal of Central South University》 SCIE EI CAS 2012年第3期715-720,共6页
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons... An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT. 展开更多
关键词 reversibly used cooling tower HEATING adaptive neuro-fuzzy inference system fuzzy modeling approach
下载PDF
Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach 被引量:1
9
作者 A.C.Adoko Li Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期11-18,共8页
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement... Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity. 展开更多
关键词 tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc -fuzzy inference system(ANF1S) subtractive clustering
下载PDF
Column breakthrough studies for the removal and recovery of phosphate by lime-iron sludge:Modeling and optimization using artificial neural network and adaptive neuro-fuzzy inference system
10
作者 Beverly S.Chittoo Clint Sutherland 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1847-1859,共13页
Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research in... Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research into beneficial reuse of water treatment residuals continues unabated.This study investigated the applicability of lime-iron sludge for phosphate adsorption by fixed-bed column adsorption.Laboratory-scale experiments were conducted at varying flow rates and bed depths.Fundamental and empirical models(Thomas,Yan,Bohart-Adams,Yoon-Nelson,and Wolboroska)as well as artificial intelligence techniques(Artificial neural network(ANN)and Adaptive neuro-fuzzy inference system(ANFIS))were used to simulate experimental breakthrough curves and predict column dynamics.Increase in flow rate resulted in reduced adsorption capacity.However,adsorption capacity was not affected by bed depth.ANN was superior in predicting breakthrough curves and predicted breakthrough times with high accuracy(R^2>0.9962).Na OH(0.5 mol·L^-1)was successfully used to regenerate the adsorption bed.After nine cyclic adsorption/desorption runs,only a marginal decrease in adsorption and desorption efficiencies of 10%and 8%respectively was observed.The same regenerate Na OH solution was reused for all desorption cycles.After nine cycles the eluent desorbed a total of 1550 mg phosphate exhibiting potential for further reuse. 展开更多
关键词 Adsorption PHOSPHATE SLUDGE adaptive Neuro-fuzzy inference System Neural Network
下载PDF
Application of the Adaptive Neuro-Fuzzy Inference System for Optimal Design of Reinforced Concrete Beams
11
作者 Jiin-Po Yeh Ren-Pei Yang 《Journal of Intelligent Learning Systems and Applications》 2014年第4期162-175,共14页
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l... Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99. 展开更多
关键词 Continuous Reinforced Concrete BEAMS GENETIC Algorithm adaptive NEURO-FUZZY inference System Correlation COEFFICIENTS
下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
12
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL Network adaptive NEURO-FUZZY inference System CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
下载PDF
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
13
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
下载PDF
The Development of an Alternative Method for the Sovereign Credit Rating System Based on Adaptive Neuro-Fuzzy Inference System
14
作者 Hakan Pabuccu Tuba Yakici Ayan 《American Journal of Operations Research》 2017年第1期41-55,共15页
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in t... The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries. 展开更多
关键词 Credit Rating Logistic Regression (LR) Neural Networks (ANN) adaptive Neuro-Fuzzy inference System (ANFIS) Comparative Studies
下载PDF
Adaptive Neuro-Fuzzy Inference System for Thermal Field Evaluation of Underground Cable System
15
作者 Mamdooh S. AI-Saud 《Journal of Energy and Power Engineering》 2012年第10期1643-1650,共8页
The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, comb... The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems. 展开更多
关键词 Underground cables AMPACITY thermal analysis finite element method adaptive neuro-fuzzy inference system.
下载PDF
Sleep Apnea Detection Using Adaptive Neuro Fuzzy Inference System
16
作者 Cafer Avci Gokhan Bilgin 《Engineering(科研)》 2013年第10期259-263,共5页
This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are o... This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are obtained from PhysioNet apnea-ECG database. Wavelet transforms are applied on the 1-minute and 3-minute length recordings. According to the preliminary tests, the variances of 10th and 11th detail components can be used as discriminative features for apneas. The features obtained from total 8 recordings are used for training and testing of an adaptive neuro fuzzy inference system (ANFIS). Training and testing process have been repeated by using the randomly obtained five different sequences of whole data for generalization of the ANFIS. According to results, ANFIS based classification has sufficient accuracy for apnea detection considering of each type of respiratory. However, the best result is obtained by analyzing the 3-minute length nasal based respiratory signal. In this study, classification accuracies have been obtained greater than 95.2% for each of the five sequences of entire data. 展开更多
关键词 Sleep Apnea Wavelet Decomposition adaptive Neuro Fuzzy inference System
下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
17
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
下载PDF
Neural-Fuzzy-Based Adaptive Sliding Mode Automatic Steering Control of Vision-based Unmanned Electric Vehicles 被引量:2
18
作者 Jinghua Guo Keqiang Li +2 位作者 Jingjing Fan Yugong Luo Jingyao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期56-68,共13页
This paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain pa... This paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain parameters.Primarily,the kinematic and dynamic models which accurately express the steering behaviors of vehicles are constructed,and in which the relationship between the look-ahead time and vehicle velocity is revealed.Then,in order to overcome the external disturbances,parametric uncertainties and time-varying features of vehicles,a neural-fuzzy-based adaptive sliding mode automatic steering controller is proposed to supervise the lateral dynamic behavior of unmanned electric vehicles,which includes an equivalent control law and an adaptive variable structure control law.In this novel automatic steering control system of vehicles,a neural network system is utilized for approximating the switching control gain of variable structure control law,and a fuzzy inference system is presented to adjust the thickness of boundary layer in real-time.The stability of closed-loop neural-fuzzy-based adaptive sliding mode automatic steering control system is proven using the Lyapunov theory.Finally,the results illustrate that the presented control scheme has the excellent properties in term of error convergence and robustness. 展开更多
关键词 Vision-based unmanned electric vehicles Automatic steering neural-fuzzy adaptive sliding control Vehicle lateral dynamics
下载PDF
基于改进Kinky Inference的输出调节自适应无拖曳控制
19
作者 孙笑云 沈强 吴树范 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1604-1613,共10页
在空间引力波探测任务中,航天器内部检验质量因存在载荷硬件噪声、环境噪声及微推力器耦合噪声等复杂干扰,影响其无拖曳控制精度,难以实现超净、超稳控制需求。提出一种基于惰性适配Lipschitz常数Kinky Inference (LACKI)的航天器自适... 在空间引力波探测任务中,航天器内部检验质量因存在载荷硬件噪声、环境噪声及微推力器耦合噪声等复杂干扰,影响其无拖曳控制精度,难以实现超净、超稳控制需求。提出一种基于惰性适配Lipschitz常数Kinky Inference (LACKI)的航天器自适应无拖曳控制方法,运用监督学习规则实现先验知识不足、样本数据存在损坏时外界干扰的逼近和抑制,及基于输出调节的模型参考自适应控制(MRAC)方法实现检验质量精确的无拖曳控制。数值仿真验证了无拖曳控制中敏感轴平动和转动自由度的状态响应性能及LACKI规则针对外界干扰的估计效果,通过与常规线性控制方法的对比,验证了所提方法对于提高无拖曳控制精度的有效性。 展开更多
关键词 监督学习 LIPSCHITZ估计 模型参考自适应控制 无拖曳控制 输出调节 Kinky inference
下载PDF
Defense against Membership Inference Attack Applying Domain Adaptation with Addictive Noise
20
作者 Hongwei Huang 《Journal of Computer and Communications》 2021年第5期92-108,共17页
Deep learning can train models from a dataset to solve tasks. Although deep learning has attracted much interest owing to the excellent performance, security issues are gradually exposed. Deep learning may be prone to... Deep learning can train models from a dataset to solve tasks. Although deep learning has attracted much interest owing to the excellent performance, security issues are gradually exposed. Deep learning may be prone to the membership inference attack, where the attacker can determine the membership of a given sample. In this paper, we propose a new defense mechanism against membership inference: NoiseDA. In our proposal, a model is not directly trained on a sensitive dataset to alleviate the threat of membership inference attack by leveraging domain adaptation. Besides, a module called Feature Crafter has been designed to reduce the necessary training dataset from 2 to 1, which creates features for domain adaptation training using noise addictive mechanisms. Our experiments have shown that, with the noises properly added by Feature Crafter, our proposal can reduce the success of membership inference with a controllable utility loss. 展开更多
关键词 Privacy-Preserving Machine Learning Membership inference Attack Domain adaptation Deep Learning
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部