Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr...Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.展开更多
In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.F...In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.展开更多
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ...Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.展开更多
Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization ...Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.展开更多
基金the National Natural Science Foundation of China(Nos.60574071 and70771080)
文摘Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.
基金supported by Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Information Science and Technology University。
文摘In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.
基金supported by the National Natural Science Foundation of China (61172073)National Key Special Program(2012ZX03003005)+1 种基金the State Key Laboratory of Rail Traffic Control and Safety (RCS2011ZT003)Beijing Jiaotong University and the Fundamental Research Funds for the Central Universities
文摘Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.