The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe...The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.展开更多
In this paper,we develop an active set identification technique.By means of the active set technique,we present an active set adaptive monotone projected Barzilai-Borwein method(ASAMPBB)for solving nonnegative matrix ...In this paper,we develop an active set identification technique.By means of the active set technique,we present an active set adaptive monotone projected Barzilai-Borwein method(ASAMPBB)for solving nonnegative matrix factorization(NMF)based on the alternating nonnegative least squares framework,in which the Barzilai-Borwein(BB)step sizes can be adaptively picked to get meaningful convergence rate improvements.To get optimal step size,we take into account of the curvature information.In addition,the larger step size technique is exploited to accelerate convergence of the proposed method.The global convergence of the proposed method is analysed under mild assumption.Finally,the results of the numerical experiments on both synthetic and real-world datasets show that the proposed method is effective.展开更多
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int...A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.展开更多
In this paper a model of transversal filter is presented to study the adaptive match of the time variant channel. The least mean square error filtering method is used to obtain the weighting coefficients of the filter...In this paper a model of transversal filter is presented to study the adaptive match of the time variant channel. The least mean square error filtering method is used to obtain the weighting coefficients of the filter. With the purpose of speeding up the convergence of the iteration equation of adaptive filtering, an adaptive factor of the iteration step size μa is derived in this paper. The result of computer simulation shows that in the case of using adaptive μa, the convergence speed of the iteration equation is increased 2 times approximately in comparison with constant μ1. The study suggests that the adaptive filter with adaptive μa have the performance to follow the change of time-variant characteristics of the channel.展开更多
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ...In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.展开更多
This paper treats adaptation to the machining precision and productivity of compound free-form surfaces. The principle of a mixed NC machining method (surface direct interpolating (SDI[1])and discrete NC programming) ...This paper treats adaptation to the machining precision and productivity of compound free-form surfaces. The principle of a mixed NC machining method (surface direct interpolating (SDI[1])and discrete NC programming) is introduced- Three adaptive procedures are discussed : ( 1 ) adaptivedivision of the machining areas, (2) adaptive triangulation for generating interference-free tool pathsfrom compound surfaces, (3) machining along surface/surface intersection (SSI ) curves with anadaptive step length. They upgrade the intelligence of machining compound surfaces.展开更多
The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the r...The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed,the reference-based cubic blind deconvolution algorithm is proposed in this paper.The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration.The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved.By deriving the optimal step size of gradient iteration under the new contrast function,we propose an efficient adaptive step optimization method.Furthermore,the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation.Numerical simulation analysis is carried out to validate the availability and superiority of this method.Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness.The signals of control moment gyroscope and flywheel were extracted,respectively,and the contribution evaluation of vibration sources to the sensitive load area was realized.This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.展开更多
In order to further achieve the balance between the calculation accuracy and efficiency of the transient analysis of the aero-engine disc cavity system,an Optimized Time-adaptive Aerother-mal Coupling calculation(OTAC...In order to further achieve the balance between the calculation accuracy and efficiency of the transient analysis of the aero-engine disc cavity system,an Optimized Time-adaptive Aerother-mal Coupling calculation(OTAC)method has been proposed.It combines one-dimensional tran-sient calculation of air system,Conventional Sequence Staggered(CSS)method,Time-adaptive Aerothermal Coupling calculation(TAC)method and differential evolution optimization algorithm to obtain an efficient and high-precision aerothermal coupling calculation method of air system.Considering both the heat conduction in the solid domain and the flow in the fluid domain as unsteady states in the OTAC,the interaction of fluid-solid information within a single coupling time step size was implemented based on the CSS method.Furthermore,the coupling time step size was automatically adjusted with the number of iterations by using the Proportional-Integral-Deri vative(PID)controller.Results show that when compared with the traditional loosely coupling method with a fixed time step size,the computational accuracy and efficiency of the OTAC method are improved by 8.9%and 30%,respectively.Compared with the tight coupling calculation,the OTAC method can achieve a speedup of 1 to 2 orders of magnitude,while the calculation error is maintained within 6.1%.展开更多
To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating...To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.展开更多
A new polynomial formulation of variable step size linear multistep methods is pre- sented, where each k-step method is characterized by a fixed set of k - 1 or k parameters. This construction includes all methods of ...A new polynomial formulation of variable step size linear multistep methods is pre- sented, where each k-step method is characterized by a fixed set of k - 1 or k parameters. This construction includes all methods of maximal order (p = k for stiff, and p = k + 1 for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are imple- mented in MATLAB, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multi- step method construction and implementation compares favorably to existing software, although variable order has not yet been included.展开更多
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n...In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.展开更多
基金The Science Foundation of Shanxi Province,China(2020JQ-481,2021JM-224)Aero Science Foundation of China(201951096002).
文摘The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.
基金the support from the National Natural Science Foundation of China(Nos.12171384,12201492,61976176)the National Science Foundation of Shaanxi(No.2021JM-323).
文摘In this paper,we develop an active set identification technique.By means of the active set technique,we present an active set adaptive monotone projected Barzilai-Borwein method(ASAMPBB)for solving nonnegative matrix factorization(NMF)based on the alternating nonnegative least squares framework,in which the Barzilai-Borwein(BB)step sizes can be adaptively picked to get meaningful convergence rate improvements.To get optimal step size,we take into account of the curvature information.In addition,the larger step size technique is exploited to accelerate convergence of the proposed method.The global convergence of the proposed method is analysed under mild assumption.Finally,the results of the numerical experiments on both synthetic and real-world datasets show that the proposed method is effective.
文摘A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.
文摘In this paper a model of transversal filter is presented to study the adaptive match of the time variant channel. The least mean square error filtering method is used to obtain the weighting coefficients of the filter. With the purpose of speeding up the convergence of the iteration equation of adaptive filtering, an adaptive factor of the iteration step size μa is derived in this paper. The result of computer simulation shows that in the case of using adaptive μa, the convergence speed of the iteration equation is increased 2 times approximately in comparison with constant μ1. The study suggests that the adaptive filter with adaptive μa have the performance to follow the change of time-variant characteristics of the channel.
文摘In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.
文摘This paper treats adaptation to the machining precision and productivity of compound free-form surfaces. The principle of a mixed NC machining method (surface direct interpolating (SDI[1])and discrete NC programming) is introduced- Three adaptive procedures are discussed : ( 1 ) adaptivedivision of the machining areas, (2) adaptive triangulation for generating interference-free tool pathsfrom compound surfaces, (3) machining along surface/surface intersection (SSI ) curves with anadaptive step length. They upgrade the intelligence of machining compound surfaces.
基金Supported by National Natural Science Foundation of China(Grant No.51775410)Science Challenge Project of China(Grant No.TZ2018007).
文摘The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed,the reference-based cubic blind deconvolution algorithm is proposed in this paper.The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration.The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved.By deriving the optimal step size of gradient iteration under the new contrast function,we propose an efficient adaptive step optimization method.Furthermore,the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation.Numerical simulation analysis is carried out to validate the availability and superiority of this method.Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness.The signals of control moment gyroscope and flywheel were extracted,respectively,and the contribution evaluation of vibration sources to the sensitive load area was realized.This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.
基金support of the National Natural Science Foundation of China (No.52007002)the Science Center for Gas Turbine Project,China (No.P2022-A-II-007-001)the Fundamental Research Funds for the Central Universities,China (No.NS2023010).
文摘In order to further achieve the balance between the calculation accuracy and efficiency of the transient analysis of the aero-engine disc cavity system,an Optimized Time-adaptive Aerother-mal Coupling calculation(OTAC)method has been proposed.It combines one-dimensional tran-sient calculation of air system,Conventional Sequence Staggered(CSS)method,Time-adaptive Aerothermal Coupling calculation(TAC)method and differential evolution optimization algorithm to obtain an efficient and high-precision aerothermal coupling calculation method of air system.Considering both the heat conduction in the solid domain and the flow in the fluid domain as unsteady states in the OTAC,the interaction of fluid-solid information within a single coupling time step size was implemented based on the CSS method.Furthermore,the coupling time step size was automatically adjusted with the number of iterations by using the Proportional-Integral-Deri vative(PID)controller.Results show that when compared with the traditional loosely coupling method with a fixed time step size,the computational accuracy and efficiency of the OTAC method are improved by 8.9%and 30%,respectively.Compared with the tight coupling calculation,the OTAC method can achieve a speedup of 1 to 2 orders of magnitude,while the calculation error is maintained within 6.1%.
基金supported by the National Natural Science Foundation of China(Grant No.51305329)the China Postdoctoral Science Foundation(Grant No.2014T70911)+1 种基金the Doctoral Foundation of Education Ministry of China(Grant No.20130201120040)Basic Research Project of Natural Science in Shaanxi Province(Grant No.2015JQ5183)
文摘To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.
文摘A new polynomial formulation of variable step size linear multistep methods is pre- sented, where each k-step method is characterized by a fixed set of k - 1 or k parameters. This construction includes all methods of maximal order (p = k for stiff, and p = k + 1 for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step size methods; instead classical methods are obtained as fixed step size restrictions within a unified framework. The methods are imple- mented in MATLAB, with local error estimation and a wide range of step size controllers. This provides a platform for investigating and comparing different multistep method in realistic operational conditions. Computational experiments show that the new multi- step method construction and implementation compares favorably to existing software, although variable order has not yet been included.
基金supported by the Hong Kong General Research Fund (Grant Nos. 202112, 15302214 and 509213)National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (Grant Nos. N HKBU204/12 and 11261160486)+1 种基金National Natural Science Foundation of China (Grant No. 11471046)the Ministry of Education Program for New Century Excellent Talents Project (Grant No. NCET-12-0053)
文摘In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.