期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
1
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 Maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
2
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 whale optimization algorithm Filter and Wrapper model K-nearest neighbor method adaptive neighborhood hybrid mutation
下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
3
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 Arithmetic optimization algorithm adaptive Balance Factor Spiral Search Brownian Motion whale Fall Mechanism
下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
4
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
下载PDF
基于ICEEMD及AWOA优化ELM的机械故障诊断方法 被引量:26
5
作者 张淑清 苑世钰 +2 位作者 姚玉永 穆勇 王丽丽 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第11期172-180,共9页
旋转机械设备故障检测及识别一直是研究的热点。针对目前故障特征提取和诊断方法的不足,提出一种基于改进的完备集合经验模态分解(ICEEMD)与自适应鲸鱼优化算法(AWOA)优化极限学习机(ELM)的机械故障诊断方法。ICEEMD能够避免在分解过程... 旋转机械设备故障检测及识别一直是研究的热点。针对目前故障特征提取和诊断方法的不足,提出一种基于改进的完备集合经验模态分解(ICEEMD)与自适应鲸鱼优化算法(AWOA)优化极限学习机(ELM)的机械故障诊断方法。ICEEMD能够避免在分解过程中产生伪模态,其模式中残留噪声小,使提取故障信息更加准确。利用ICEEMD将采集到的信号分解成多个本征模态函数(IMF),对滚动轴承不同故障状态IMF的斯皮尔曼等级相关系数(SRCC)的计算结果进行分析,得出筛选IMF的标准为其SRCC大于0.02;将筛选后的IMF的混合熵(HE)作为特征向量。WOA相比其他仿生算法所需要调整的相关参数少、收敛速度快、稳定性好。AWOA利用自适应权重优化WOA的局部搜索方式,进一步提高了收敛精度。利用AWOA对ELM的权值和阈值进行优化,可以提高故障诊断的准确率。通过对比实验证明,AWOA-ELM的学习能力强、故障诊断的准确率更高。AWOA-ELM应用在滚动轴承不同尺寸滚珠和外圈故障诊断中,对滚珠故障诊断的准确率达到99.5%,对外圈故障诊断的准确率达到100%。 展开更多
关键词 改进的完备集合经验模态分解 混合熵 自适应鲸鱼算法优化极限学习机 机械故障诊断方法
下载PDF
基于AWOA算法与LSSVM的主蒸汽流量软测量模型 被引量:5
6
作者 邓怀勇 马琴 +2 位作者 陈国彬 刘超 牛培峰 《仪表技术与传感器》 CSCD 北大核心 2018年第12期78-82,共5页
汽轮机主蒸汽流量是分析机组运行效率的重要参数。针对大型机组主蒸汽流量计算模型复杂繁琐、计算精度不高的现状,提出一种基于自适应鲸鱼优化算法(AWOA)与最小二乘支持向量机(LSSVM)结合的主蒸汽流量软测量模型。针对鲸鱼优化算法(WOA... 汽轮机主蒸汽流量是分析机组运行效率的重要参数。针对大型机组主蒸汽流量计算模型复杂繁琐、计算精度不高的现状,提出一种基于自适应鲸鱼优化算法(AWOA)与最小二乘支持向量机(LSSVM)结合的主蒸汽流量软测量模型。针对鲸鱼优化算法(WOA)寻优精度低的问题,提出了自适应鲸鱼优化算法,在鲸鱼个体位置更新公式中引入自适应惯性权值,通过平衡算法的开发和探索能力改善算法的优化性能。在此基础上,提出了基于AWOA优化LSSVM的主蒸汽流量的软测量模型,引入AWOA算法来提高LSSVM的学习效率、逼近精度和泛化能力。主蒸汽流量软测量的仿真结果表明:优化后的AWOA-LSSVM主蒸汽流量软测量模型具有良好的训练精度与泛化能力,可有效地用于主蒸汽流量的软测量。 展开更多
关键词 软测量 主蒸汽流量 鲸鱼优化算法 最小二乘支持向量机 自适应
下载PDF
CAWOA-ELM混合模型的锅炉NO_x排放量预测 被引量:5
7
作者 赖敏 陈国彬 +1 位作者 刘超 牛培峰 《动力工程学报》 CAS CSCD 北大核心 2018年第11期874-879,共6页
针对燃烧过程中变量之间的强非线性和耦合性,利用极限学习机(ELM)和改进的鲸鱼优化算法(WOA)进行混合建模。该方法利用Sin混沌自适应鲸鱼优化算法(CAWOA)对极限学习机的模型参数进行搜索和优化,以提高极限学习机的泛化性能。在CAWOA算法... 针对燃烧过程中变量之间的强非线性和耦合性,利用极限学习机(ELM)和改进的鲸鱼优化算法(WOA)进行混合建模。该方法利用Sin混沌自适应鲸鱼优化算法(CAWOA)对极限学习机的模型参数进行搜索和优化,以提高极限学习机的泛化性能。在CAWOA算法中,通过引入Sin混沌搜索策略和自适应惯性权值来改善WOA算法的全局优化性能。在此基础上,利用优化后的极限学习机对330MW煤粉锅炉的NO_x排放质量浓度进行预测,建立了CAWOA-ELM的NO_x排放量预测模型,并与同类算法模型进行对比研究。结果表明:该方法具有更好的泛化能力,能更加精确地预测NO_x排放量。 展开更多
关键词 极限学习机 鲸鱼优化算法 混沌搜索 自适应惯性权值 NOX排放量
下载PDF
基于CAWOA-BP的船舶凝给水系统故障诊断 被引量:2
8
作者 肖林博 陈辉 管聪 《舰船科学技术》 北大核心 2023年第6期118-124,共7页
为克服传统专家经验在故障诊断方面的不足,实现船舶凝给水系统的智能诊断,在标准BP神经网络基础上提出一种优化后的CAWOA-BP故障诊断模型。采用混沌映射以及自适应权重调整策略优化WOA鲸鱼算法,利用优化后的WOA鲸鱼算法改进BP神经网络... 为克服传统专家经验在故障诊断方面的不足,实现船舶凝给水系统的智能诊断,在标准BP神经网络基础上提出一种优化后的CAWOA-BP故障诊断模型。采用混沌映射以及自适应权重调整策略优化WOA鲸鱼算法,利用优化后的WOA鲸鱼算法改进BP神经网络的权值及阈值矩阵。由于船舶凝给水系统的状态监测数据是复杂多维度数据,利用UMAP降维算法对原始数据进行降维。最后,利用降维处理后的数据训练CAWOA-BP神经网络模型,实现故障诊断。通过对正常及故障数据的学习,发现优化后的CAWOA-BP模型相比于标准BP,WOA-BP,PSO-BP故障诊断模型具有更高的准确率、精确率、召回率及预测误差。研究表明,基于优化后的CAWOA-BP神经网络故障诊断方法能够更加精确实现船舶凝给水系统的故障诊断。 展开更多
关键词 船舶凝给水系统 优化BP神经网络 WOA鲸鱼算法 混沌映射 自适应权重
下载PDF
基于GAWOA优化ELM的风机变流器故障诊断 被引量:1
9
作者 许如远 马萍 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第3期377-384,共8页
为提高双馈异步风力发电机变流器的开路故障诊断准确率,提出一种基于全局自适应鲸鱼优化算法优化极限学习机的故障诊断方法.首先,建立双馈异步风力发电机(DFIG)并网模型,采集网侧变流器故障状态下的三相线电压信号.其次,对采集的电压信... 为提高双馈异步风力发电机变流器的开路故障诊断准确率,提出一种基于全局自适应鲸鱼优化算法优化极限学习机的故障诊断方法.首先,建立双馈异步风力发电机(DFIG)并网模型,采集网侧变流器故障状态下的三相线电压信号.其次,对采集的电压信号进行快速傅里叶变换,再将三相线电压的不同谐波分量的频率幅值和直流分量重构成特征向量,为去除部分冗余特征,利用邻域保持投影对特征向量进行降维.最后,利用全局自适应鲸鱼算法优化的极限学习机(GAWOA-ELM)对变流器故障进行诊断.使用不同方法对不同信噪比下的变流器故障进行诊断分析,验证了本文所提方法的有效性和鲁棒性. 展开更多
关键词 双馈感应电机 变流器 故障诊断 全局自适应鲸鱼算法 极限学习机
下载PDF
基于PCA-AWOA-ELM模型的矿井突水水源识别 被引量:4
10
作者 于小鸽 刘燚菲 翟培合 《煤炭科学技术》 CAS CSCD 北大核心 2023年第3期182-189,共8页
矿井突水是煤矿生产过程最具威胁的灾害之一,为了保障煤矿安全生产,提高矿井突水水源识别精度,提出一种基于改进鲸鱼优化算法(AWOA)耦合极限学习机的水源识别模型。以岱庄煤矿为例,选取Na^(+)、Ca^(2+)、Mg^(2+)、Cl^(-)、SO_(4)^(2-)、... 矿井突水是煤矿生产过程最具威胁的灾害之一,为了保障煤矿安全生产,提高矿井突水水源识别精度,提出一种基于改进鲸鱼优化算法(AWOA)耦合极限学习机的水源识别模型。以岱庄煤矿为例,选取Na^(+)、Ca^(2+)、Mg^(2+)、Cl^(-)、SO_(4)^(2-)、HCO_(3)^(-)作为判别指标,基于SPSS因子分析提取评价指标主成分,6种离子间相关性较大,Ca^(2+)和Mg^(2+),Ca^(2+)、Mg^(2+)与SO_(4)^(2-)、Cl^(-)之间的相关性均达到了0.7以上,SO_(4)^(2-)和Cl^(-)之间的相关性也达0.68,通过主成分分析提取了3个主成分,从六维空间降低到三维空间,在减少了样本指标之间信息重复的同时,也减少了极限学习机输入层数量,提高了模型对各类型数据的泛化能力。其次,引入混沌动态权重因子和精英反向机制对鲸鱼算法进行改进,改进的鲸鱼优化算法克服了极限学习机权值阈值随机取值的缺点,混沌动态权重因子、精英反向机制的引入降低了模型计算复杂度,提高了算法精度,算法速度,跳出了局部寻优。通过训练38组样本数据,优化极限学习机的权值和阈值,最终构建PCA-AWOA-ELM水源识别模型,并对10组未知的测试样本进行预测。结果表明,PCA-AWOA-ELM模型的预测精度达100%,PCA-WOA-ELM模型精度为90%,PCA-ELM、ELM模型精度为60%,PCA-AWOA-ELM模型识别精度、运行速度、稳定性均明显高于PCA-WOA-ELM模型、PCA-ELM模型和ELM模型,为矿井安全生产提供了重要保障。 展开更多
关键词 矿井突水 水源识别 主成分分析(PCA) 改进鲸鱼优化算法(awoa) 极限学习机(ELM)
下载PDF
An Adaptive Classifier Based Approach for Crowd Anomaly Detection
11
作者 Sofia Nishath P.S.Nithya Darisini 《Computers, Materials & Continua》 SCIE EI 2022年第7期349-364,共16页
Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.... Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning.In this approach,Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes.We use multiple instance learning(MIL)to dynamically develop a deep anomalous ranking framework.This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections.We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results.The performance parameters such as accuracy,precision,recall,and F-score are considered to evaluate the proposed technique using the Python simulation tool.Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset. 展开更多
关键词 Abnormal event detection adaptive GoogleNet neural network classifier multiple instance learning multi-objective whale optimization algorithm
下载PDF
基于自适应网格多目标鲸鱼算法的火力分配问题研究
12
作者 佘维 王业腾 +3 位作者 孔德锋 刘炜 李英豪 田钊 《郑州大学学报(理学版)》 CAS 北大核心 2024年第6期17-24,共8页
传统多目标优化算法在解决多于两个目标函数的火力分配问题时收敛效果不佳,多样性差,耗时过大。基于此,提出了一种自适应网格多目标鲸鱼优化算法(AG-MOWOA)来解决以震塌比例、弹药成本和自身剩余价值为目标函数的火力分配问题。该算法... 传统多目标优化算法在解决多于两个目标函数的火力分配问题时收敛效果不佳,多样性差,耗时过大。基于此,提出了一种自适应网格多目标鲸鱼优化算法(AG-MOWOA)来解决以震塌比例、弹药成本和自身剩余价值为目标函数的火力分配问题。该算法引入混沌映射和外部Pareto存档进化策略提高了种群的多样性,通过自适应网格选取最优个体的方法极大地减少了算法运行时间。仿真实验结果表明,该算法较其他算法收敛速度更快、收敛质量更高、解集分布更多样,能够有效解决火力分配问题。 展开更多
关键词 火力分配 混沌映射 自适应网格划分 多目标优化 鲸鱼优化算法
下载PDF
基于改进白鲸优化算法的D2D通信功率控制 被引量:1
13
作者 孙明 吕天宇 《高师理科学刊》 2024年第4期40-47,共8页
D2D(Device-to-Device)通信作为未来移动通信网络的关键技术,为用户提供了直接通信的便利性和资源共享的高效性.然而,D2D通信的功率控制一直是影响通信质量和系统性能的关键问题.为解决这一问题,将精英反向学习、自适应权重两种策略引... D2D(Device-to-Device)通信作为未来移动通信网络的关键技术,为用户提供了直接通信的便利性和资源共享的高效性.然而,D2D通信的功率控制一直是影响通信质量和系统性能的关键问题.为解决这一问题,将精英反向学习、自适应权重两种策略引入到白鲸优化算法(Beluga Whale Optimization,BWO)中,并利用莱维飞行的随机步长策略来增加算法寻优的多样性,提出了基于改进白鲸优化算法的D2D通信功率控制方法.该方法利用最优解的信息引导搜索过程,可提高搜索效率和全局收敛,并能够有效提高通信效率和系统稳定性.为了验证所提出方法的有效性,开展了大量的数值仿真实验.结果显示,基于改进白鲸优化算法的D2D通信功率控制方法在增加系统吞吐量、减少干扰方面有显著的改善.同时,提出的算法相对于已有的算法有着更出色的收敛性与鲁棒性,在不同通信环境和参数设置下都能表现出更稳定的性能. 展开更多
关键词 D2D通信 功率控制 白鲸优化算法 精英反向学习 自适应权重 莱维飞行
下载PDF
基于概率精英差分和自适应黄金正弦的鲸鱼优化算法
14
作者 李克文 李国庆 +2 位作者 崔雪丽 牛小楠 蒋衡杰 《计算机工程与设计》 北大核心 2024年第10期2944-2952,共9页
针对鲸鱼优化算法收敛速度慢和寻优精度低的缺点,提出一种基于概率精英差分和自适应黄金正弦的鲸鱼优化算法。基于最大最小思想优化拉丁超立方体抽样来初始化鲸鱼种群,使初始种群分布更加均匀,拥有更好的全局搜索能力;提出融合余弦自适... 针对鲸鱼优化算法收敛速度慢和寻优精度低的缺点,提出一种基于概率精英差分和自适应黄金正弦的鲸鱼优化算法。基于最大最小思想优化拉丁超立方体抽样来初始化鲸鱼种群,使初始种群分布更加均匀,拥有更好的全局搜索能力;提出融合余弦自适应算子的黄金正弦算法改进鲸鱼的螺旋更新,加快收敛速度,提高收敛精度;设计概率精英差分变异方法并进行贪婪选择,优化算法流程,增强算法跳出陷入局部最优的能力。选取4个单峰测试函数、4个多峰测试函数和5个多最优解的多模态测试函数与主流优化算法进行对比实验,实验结果表明,该算法具有更高的寻优精度、更快的收敛速度以及更优的全局搜索能力,通过消融实验验证了该算法改进策略的有效性。 展开更多
关键词 鲸鱼优化算法 群智能优化 拉丁超立方体抽样 差分变异 贪婪策略 余弦自适应策略 黄金正弦算法
下载PDF
一种多策略改进鲸鱼优化算法的混沌系统参数辨识 被引量:1
15
作者 潘悦悦 吴立飞 杨晓忠 《智能系统学报》 CSCD 北大核心 2024年第1期176-189,共14页
针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初... 针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初始种群,采用非线性收敛因子和自适应权重,提高算法收敛速度,为了避免算法陷入局部最优,动态选择自适应t分布或蚁狮优化算法更新后期位置,提高处理局部极值的能力。通过对10个基准函数和高维测试函数进行仿真试验,表明MIWOA具有良好的稳定性和收敛精度。将MIWOA应用于辨识Rossler和Lu混沌系统参数,仿真结果优于现有成果,表明本文MIWOA辨识混沌系统参数的高效性和实用性。 展开更多
关键词 多策略改进鲸鱼优化算法 混沌系统 参数辨识 Chebyshev混沌映射 自适应t分布 蚁狮优化算法 基准函数 Wilcoxon秩和检验
下载PDF
融入小生境和混合变异策略的鲸鱼优化算法 被引量:1
16
作者 于涛 高岳林 《计算机工程与应用》 CSCD 北大核心 2024年第10期88-104,共17页
鲸鱼优化算法作为一种结构简单的先进优化算法,被用于解决各类学科问题。通过对鲸鱼优化算法进行深入研究,发现该算法存在收敛速度慢、无法跳出局部最优、收敛精度低以及无法平衡全局勘探与局部开发能力等问题。为解决上述问题,提出一... 鲸鱼优化算法作为一种结构简单的先进优化算法,被用于解决各类学科问题。通过对鲸鱼优化算法进行深入研究,发现该算法存在收敛速度慢、无法跳出局部最优、收敛精度低以及无法平衡全局勘探与局部开发能力等问题。为解决上述问题,提出一种融入小生境和混合变异策略的鲸鱼优化算法(whale optimization algorithm integrating niche and hybrid mutation strategy,NHWOA)。该算法通过引入自适应权重,平衡算法全局勘探与局部开发能力,并加快收敛速度;将种群按照相同规模划分成三个小生境并独立寻优,提高种群多样性;采用混合变异策略对种群进行随机扰动,帮助算法跳出局部最优。通过在CEC2017测试套件上对NHWOA进行仿真实验,并将其应用于特征选择问题,验证了NHWOA的先进性和有效性。NHWOA的收敛速度更快,收敛精度更高,并且鲁棒性更好。 展开更多
关键词 鲸鱼优化算法 小生境 混合变异 自适应权重 特征选择
下载PDF
混合多项自适应权重的混沌麻雀搜索算法 被引量:5
17
作者 杜云 周志奇 +2 位作者 贾科进 丁力 卢孟杨林 《计算机工程与应用》 CSCD 北大核心 2024年第7期70-83,共14页
麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提... 麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提高发现者的全局搜索能力和搜索范围;在加入者引入改进鲸鱼优化算法的气泡网捕食策略,提高算法的局部搜索性能和跳出局部最优的能力;结合反向学习策略机制,对所有的个体进行最优选择,使每次迭代后的个体质量得到提升,以提高算法的寻优效率和寻优精度。将混合多项自适应权重的混沌麻雀搜索算法与4种经典基本算法和9种改进的麻雀搜索算法在12种测试函数和CEC2022测试函数上进行对比,改进算法有更好的寻优性能和收敛速度。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 自适应权重 鲸鱼优化算法 反向学习
下载PDF
霍尔效应式力传感器的温度补偿
18
作者 江银玉 丁勇 +1 位作者 左锋 卢文科 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期9-17,共9页
针对霍尔效应式力传感器温度漂移的问题,提出了混沌自适应鲸鱼优化BP神经网络(CIWOA-BP)的温度补偿新模型。该模型通过Cubic映射作为初始鲸鱼种群生成方法,以提高种群的质量和分布均匀性。引入自适应权重调整鲸鱼的收缩包围机制,提高算... 针对霍尔效应式力传感器温度漂移的问题,提出了混沌自适应鲸鱼优化BP神经网络(CIWOA-BP)的温度补偿新模型。该模型通过Cubic映射作为初始鲸鱼种群生成方法,以提高种群的质量和分布均匀性。引入自适应权重调整鲸鱼的收缩包围机制,提高算法的全局搜索能力和收敛性。利用CIWOA算法对反向传播(back propagation,BP)神经网络的初始权值和阈值进行优化,使模型具有更好的测量精度和稳定性。研究结果表明,温度补偿以后霍尔效应式力传感器的灵敏度温度系数αs由5.08×10^(-3)/℃减少至9.8×10^(-5)/℃,减小了2个数量级,温度附加相对误差由补偿前的19.82%减小到了0.38%,减小了52倍以上,从而有效的减弱了温度对测量结果的影响。 展开更多
关键词 混沌自适应鲸鱼优化算法 BP神经网络 霍尔效应式力传感器 温度补偿
下载PDF
优化随机森林模型的工控网络异常检测
19
作者 宗学军 王润鹏 +1 位作者 何戡 连莲 《沈阳工业大学学报》 CAS 北大核心 2024年第2期197-205,共9页
针对现有Modbus TCP协议的异常检测效率和准确率低的问题,提出了一种基于混合鲸鱼算法优化的随机森林异常检测模型。该模型将柯西变异和自适应动态惯性权重相结合,利用柯西变异算子增加种群多样性,避免算法陷入局部最优;引用自适应动态... 针对现有Modbus TCP协议的异常检测效率和准确率低的问题,提出了一种基于混合鲸鱼算法优化的随机森林异常检测模型。该模型将柯西变异和自适应动态惯性权重相结合,利用柯西变异算子增加种群多样性,避免算法陷入局部最优;引用自适应动态惯性权重因子提高种群的全局搜索能力,使算法的收敛速度加快。仿真实验结果表明,该模型相较于其他分类算法有着更高的准确率和较强的适应性,证明了模型在实际应用中具有较高的检测精度。 展开更多
关键词 工控网络 异常检测 工业协议 鲸鱼算法 随机森林 混沌映射 柯西变异 自适应权重
下载PDF
混合策略改进鲸鱼优化算法在圆柱度误差评定中的应用
20
作者 吕星辰 郑鹏 +1 位作者 程亚红 郑嘉琦 《机床与液压》 北大核心 2024年第3期118-123,共6页
机械零件的形位精度对其互换性以及功能质量具有极其重要的影响,其中圆柱度误差是评价回转类零件精度的一个重要指标。设计一种基于混合策略改进的鲸鱼优化算法,以提高圆柱度误差在评定过程中的精度和收敛速度。首先,在初始种群的生成... 机械零件的形位精度对其互换性以及功能质量具有极其重要的影响,其中圆柱度误差是评价回转类零件精度的一个重要指标。设计一种基于混合策略改进的鲸鱼优化算法,以提高圆柱度误差在评定过程中的精度和收敛速度。首先,在初始种群的生成中引入Tent混沌映射和非线性参数,以提高解的质量;其次,为了改善算法的局部搜索能力,在螺旋式位置更新阶段引入一个自适应权重系数;最后,在随机搜寻阶段引入莱维飞行从而提高全局搜索能力。通过采用不同优化算法的实验和结果对比分析,提出的算法在圆柱度误差评定精度和速度方面均有一定提升。 展开更多
关键词 圆柱度误差 鲸鱼优化算法 混沌映射 自适应权重 莱维飞行
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部