Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional a...Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional antennas simultaneously in one wireless LAN. Omni-directional an-tennas follow the standard Distributed Coordination Function (DCF) and smart antennas follow the Directional DCF (DDCF). The proposed DDCF is based on Hybrid Virtual Carrier Sense (HVCS) mechanism,which includes Omni-directional Request-To-Send/Clear-To-Send (ORTS/OCTS) hand-shake mechanism and directional data transmission. HDCF is compatible with DCF. When a node transmits in a directional beam,the other nodes can multiplex the physical channel. Hence,HDCF supports Space Division Multiple Access (SDMA). Simulation results show that HDCF can support hybrid antennas effectively and provide much higher network throughput and lower delay and jitter than DCF does.展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
文摘Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional antennas simultaneously in one wireless LAN. Omni-directional an-tennas follow the standard Distributed Coordination Function (DCF) and smart antennas follow the Directional DCF (DDCF). The proposed DDCF is based on Hybrid Virtual Carrier Sense (HVCS) mechanism,which includes Omni-directional Request-To-Send/Clear-To-Send (ORTS/OCTS) hand-shake mechanism and directional data transmission. HDCF is compatible with DCF. When a node transmits in a directional beam,the other nodes can multiplex the physical channel. Hence,HDCF supports Space Division Multiple Access (SDMA). Simulation results show that HDCF can support hybrid antennas effectively and provide much higher network throughput and lower delay and jitter than DCF does.
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.