期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
1
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays 被引量:11
2
作者 Wei-Sheng Chen Rui-Hong Li Jing Li 《International Journal of Automation and computing》 EI 2010年第4期438-446,共9页
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (... An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper. 展开更多
关键词 adaptive iterative learning control (AILC) nonlinearly parameterized systems time-varying delays Lyapunov- Krasovskii-like composite energy function.
下载PDF
Adaptive Iterative Learning Control for Nonlinear Time-delay Systems with Periodic Disturbances Using FSE-neural Network 被引量:4
3
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI 2011年第4期403-410,共8页
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad... An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme. 展开更多
关键词 adaptive control iterative learning control (ILC) time-delay systems Fourier series expansion-neural network periodic disturbances.
下载PDF
An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems 被引量:3
4
作者 Jianming Wei Youan Zhang Hu Bao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期618-627,共10页
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens... This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 adaptive iterative learning control(AILC) boundary layer function composite energy function(CEF) fractional order differential learning law fractional order nonlinear systems Mittag-Leffler function
下载PDF
Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme 被引量:11
5
作者 SUN Ming-Xuan HE Xiong-Xiong CHEN Bing-Yu 《自动化学报》 EI CSCD 北大核心 2007年第11期1189-1195,共7页
重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微... 重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微分学习方法为估计经常的被建议时。介绍重复学习控制为在每个周期的开始的起始的重新定位避免要求,是不同的,并且变化时间的 unknowns 不是必要的周期。随混合学习的采纳,靠近环的系统的州的变量的固定被保证,追踪的错误被保证作为重复增加收敛到零,这被显示出。建议计划的有效性通过数字模拟被表明。 展开更多
关键词 重复学习控制 机器人 时序变化系统 混合学习计划
下载PDF
Dual-stage Optimal Iterative Learning Control for Nonlinear Non-affine Discrete-time Systems 被引量:19
6
作者 CHI Rong-Hu HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2007年第10期1061-1065,共5页
根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中... 根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中分析仅仅取决于动态系统的 I/O 数据。换句话说,没有知道系统的任何另外的知识,我们能容易选择控制参数。模拟学习沿着重复轴说明介绍方法的几何集中,在哪个马路的一个例子控制为它的内在的工程重要性是引人注目的交通反复的学习。 展开更多
关键词 非线性系统 离散时间系统 自适应控制 迭代学习控制 匝道交通调节
下载PDF
Neural networks-based iterative learning control consensus for periodically time-varying multi-agent systems
7
作者 CHEN JiaXi LI JunMin +1 位作者 CHEN WeiSheng GAO WeiFeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期464-474,共11页
In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameteri... In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameterized terms with periodic disturbances.Neural networks and Fourier base expansions are introduced to describe the periodically time-varying dynamic terms.On this basis,an adaptive learning parameter with a positively convergent series term is constructed,and a distributed control protocol based on local signals between agents is designed to ensure accurate consensus of the closed-loop systems.Furthermore,consensus algorithm is generalized to solve the formation control problem.Finally,simulation experiments are implemented through MATLAB to demonstrate the effectiveness of the method used. 展开更多
关键词 multi-agent systems adaptive iterative learning control nonlinearly parameterized dynamics Fourier series expansion neural networks
原文传递
Adaptive Iterative Learning Control of Non-uniform Trajectory Tracking for Strict Feedback Nonlinear Time-varying Systems 被引量:1
8
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI CSCD 2014年第6期621-626,共6页
In this paper, an iterative learning control strategy is presented for a class of nonlinear time-varying systems, the timevarying parameters are expanded into Fourier series with bounded remainder term. The backsteppi... In this paper, an iterative learning control strategy is presented for a class of nonlinear time-varying systems, the timevarying parameters are expanded into Fourier series with bounded remainder term. The backstepping design technique is used to deal with system dynamics with non-global Lipschitz nonlinearities and the approach proposed in this paper solves the non-uniform trajectory tracking problem. Based on the Lyapunov-like synthesis, the proposed method shows that all signals in the closed-loop system remain bounded over a pre-specified time interval [0, T ]. And perfect non-uniform trajectory tracking of the system output is completed. A typical series is introduced in order to deal with the unknown bound of remainder term. Finally, a simulation example shows the feasibility and effectiveness of the approach. 展开更多
关键词 iterative learning control time-varying systems Lyapunov-like non-uniform trajectory tracking Fourier series expansion BACKSTEPPING
原文传递
A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems 被引量:6
9
作者 Wei Zhou Miao Yu De-Qing Huang 《International Journal of Automation and computing》 EI CSCD 2015年第3期330-336,共7页
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the... In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking. 展开更多
关键词 iterative learning control high-order internal model discrete linear time-varying systems iteration-varying desired tra-jectory
原文传递
Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction 被引量:17
10
作者 Dan Li Jun-Min Li Department of Mathematics,Xidian University,Xi an 710071,China 《International Journal of Automation and computing》 EI 2012年第6期578-586,共9页
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati... This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method. 展开更多
关键词 Nonlinearly time-varying parameterized systems unknown time-varying delay unknown control direction composite energy function adaptive iterative learning control.
原文传递
Observer-Based Adaptive Neural Iterative Learning Control for a Class of Time-Varying Nonlinear Systems
11
作者 韦建明 张友安 刘京茂 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第3期303-312,共10页
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-doma... In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 adaptive iterative learning control(AILC) time-varying nonlinear systems output tracking OBSERVER FILTER
原文传递
Decentralized adaptive iterative learning control for interconnected systems with uncertainties 被引量:2
12
作者 Lili SUN Tiejun WU 《控制理论与应用(英文版)》 EI 2012年第4期490-496,共7页
In many applications, the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them. This decomposition is motivated by the ease and flexibility of the controller desi... In many applications, the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them. This decomposition is motivated by the ease and flexibility of the controller design for each subsystem. In this paper, a decentralized model reference adaptive iterative learning control scheme is developed for interconnected systems with model uncertainties. The interconnections in the dynamic equations of each subsystem are considered with unknown boundaries. The proposed controller of each subsystem depends only on local state variables without any information exchange with other subsystems. The adaptive parameters are updated along iteration axis to com- pensate the interconnections among subsystems. It is shown that by using the proposed decentralized controller, the states of the subsystems can track the desired reference model states iteratively. Simulation results demonstrate that, utilizing the proposed adaptive controller, the tracking error for each subsystem converges along the iteration axis. 展开更多
关键词 Decentralized control Interconnected system Model reference adaptive iterative learning control Model uncertainties
原文传递
Robust Fault-tolerant Iterative Learning Control for Discrete Systems via Linear Repetitive Processes Theory 被引量:2
13
作者 Jian Ding Blazej Cichy +2 位作者 Krzysztof Galkowski Eric Rogers Hui-Zhong Yang 《International Journal of Automation and computing》 EI CSCD 2015年第3期254-265,共12页
This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetit... This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetitive processes is used to develop formulas for gain matrices design, together with convergent conditions in terms of linear matrix inequalities. An extension to deal with model uncertainty of the polytopic or norm bounded form is also developed and an illustrative example is given. 展开更多
关键词 iterative learning control linear repetitive processes linear matrix inequality(LMI) discrete linear systems fault-tolerant cont
原文传递
Adaptive learning tracking control of robotic manipulators with uncertainties
14
作者 Keng Peng TEE 《控制理论与应用(英文版)》 EI 2010年第2期160-165,共6页
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning prope... An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results. 展开更多
关键词 adaptive control learning control robotic dynamic systems UNCERTAINTIES
下载PDF
A Real Time Self-Tuning Motion Controller for Mobile Robot Systems 被引量:6
15
作者 Mohamed Boukens Abdelkrim Boukabou Mohammed Chadli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期84-96,共13页
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha... This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method. 展开更多
关键词 learning and adaptive systems motion control METAHEURISTIC robust control real-time tuning SELF-TUNING WHEELED mobile robot
下载PDF
Consensus control for heterogeneous uncertain multi-agent systems with hybrid nonlinear dynamics via iterative learning algorithm 被引量:1
16
作者 XIE Jin CHEN JiaXi +2 位作者 LI JunMin CHEN WeiSheng ZHANG Shuai 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第10期2897-2906,共10页
In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's p... In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's parameters are uncertain.The multiagent systems are considered a kind of hybrid order nonlinear systems,which relaxes the strict requirement that all agents are of the same order in some existing work.For theoretical analyses,we design a composite energy function with virtual gain parameters to reduce the restriction that the controller gain depends on global information.Considering the stability of the controller,we introduce a smooth continuous function to improve the piecewise controller to avoid possible chattering.Theoretical analyses prove the convergence of the presented algorithm,and simulation experiments verify the effectiveness of the algorithm. 展开更多
关键词 multi-agent systems adaptive iterative learning control hybrid nonlinear dynamics composite energy function consensus algorithm
原文传递
Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control 被引量:4
17
作者 Mingming Ha Ding Wang Derong Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1262-1272,共11页
The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t... The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches. 展开更多
关键词 adaptive critic design adaptive dynamic programming(ADP) approximate dynamic programming discrete-time nonlinear systems reinforcement learning stability analysis tracking control value iteration(VI)
下载PDF
Iterative Learning Control Algorithm with a Fixed Step 被引量:4
18
作者 WANG Yan NIU Jianjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期669-675,共7页
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e... Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms. 展开更多
关键词 iterative learning control fixed step time variant system simulating study robot control
下载PDF
Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking 被引量:2
19
作者 David H.Owens Chris T.Freeman Bing Chu 《International Journal of Automation and computing》 EI CSCD 2015年第3期243-253,共11页
Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. Thi... Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. This problem addresses the practical needs of many applications, including industrial automation, crane control, satellite positioning and motion control within a medical stroke rehabilitation context. This paper provides a substantial generalization of this framework by providing a solution to the problem of convergence at intermediate points with simultaneous tracking of subsets of outputs to reference trajectories on subintervals. This formulation enables the NOILC paradigm to tackle tasks which mix "point to point" movements with linear tracking requirements and hence substantially broadens the application domain to include automation tasks which include welding or cutting movements, or human motion control where the movement is restricted by the task to straight line and/or planar segments. A solution to the problem is presented in the framework of NOILC and inherits NOILC s well-defined convergence properties. Design guidelines and supporting experimental results are included. 展开更多
关键词 iterative learning control learning control optimization linear systems robotics.
原文传递
Application of Artificial Neural Network in Robotic Hybrid Position/Force Control
20
作者 陈卫东 《High Technology Letters》 EI CAS 1996年第1期26-29,共4页
A hybrid position/force controller is designed for the joint 2 and the joint 3 of thePUMA 560 robot.The hybrid controller includes a multilayered neural network,which canidentify the dynamics of the contacted environm... A hybrid position/force controller is designed for the joint 2 and the joint 3 of thePUMA 560 robot.The hybrid controller includes a multilayered neural network,which canidentify the dynamics of the contacted environment and can optimize the parameters of PIDcontroller.The experimental results show that after having been trained,the robot has sta-ble response to the training patterns and strong adaptive ability to the situation between thepatterns. 展开更多
关键词 robotic hybrid position/force control adaptive PID control FEEDFORWARD network BP algorithm Training pattern
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部