This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences withi...This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth...The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.展开更多
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base...In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.展开更多
Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviatio...Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviation of ±10 ℃ in closed loop control. A control oriented boiler model and an appropriate optimal control strategy are the essential tools for improving the accuracy of this control system. This paper offers a comprehensive integrated 8th order mathematical model for the boiler and a Kalman Filter based state predictive controller for effectively controlling the main steam temperature within ± 2 ℃ and to enhance the efficiency of the boiler. It is proved through simulation that the predictive controller method with Kalman filter state estimator and predictor is the most appropriate one for the optimization of main steam temperature control as compared to other methods. This control system is under field implementation in a 210 MW boiler of a thermal power plant.展开更多
Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the n...Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the novel model predictive control(MPC) for the yaw system of the wind turbines. The control horizon is adapted to the one with the best predictive performance among multiple control horizons. The adaptive MPC is demonstrated by simulations using real wind data, and its performance is compared with the baseline MPC at fixed control horizon. Results show that the adaptive MPC provides better comprehensive performance than the baseline ones at different preview time of wind directions. Therefore, the proposed adaptive technique is potentially useful for the wind turbines in the future.展开更多
Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch ...Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch systems with speed disturbance suppression.First,an improved small-world neural network with topology optimization is used for 15-second-ahead forecasting of wind speed,whose rolling time is 1s,and the predicted value serves as a feedforward to obtain the early compensation variation of the pitch angle.Second,a function of the multi-objective optimization at full wind speed with optimal power point tracking and minimum control variation is constructed,and an advanced one-step adaptive predictive control algorithm for wind power is proposed based on the online estimation and prediction of the time-varying pseudo partial derivative(PPD).In addition,the compound MFAPC framework is synthetically obtained,whose closed-loop effectiveness is verified by a BP-built pitch system based on the SCADA data with all working conditions.Robustness of the schemes has been analyzed in terms of parametric uncertainties and different operating conditions,and a detailed comparison is finally presented.The results show that the proposed MFAPC can not only effectively suppress the random disturbance of wind speed,but also meet the stability of wind power and the security of grid-connections for all operating conditions.展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.展开更多
基金supported by“MOST”for the support under Grants No.MOST 104-2632-B-468-001,No.MOST 103-2221-E-468-009-MY2,No.MOST 104-2221-E-182-008-MY2,No.MOST 105-2221-E-468-009,No.MOST 106-2221-E-468-023,No.MOST 106-2221-E-182-033Chang Gung Memorial Hospital under Grant No.CMRPD2C0053
文摘This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
文摘The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.
基金Supported by National Natural Science Foundation of China(61873006,61673053)National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.
文摘Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviation of ±10 ℃ in closed loop control. A control oriented boiler model and an appropriate optimal control strategy are the essential tools for improving the accuracy of this control system. This paper offers a comprehensive integrated 8th order mathematical model for the boiler and a Kalman Filter based state predictive controller for effectively controlling the main steam temperature within ± 2 ℃ and to enhance the efficiency of the boiler. It is proved through simulation that the predictive controller method with Kalman filter state estimator and predictor is the most appropriate one for the optimization of main steam temperature control as compared to other methods. This control system is under field implementation in a 210 MW boiler of a thermal power plant.
基金supported by the National Natural Science Foundation of China (No. 61803393)the Natural Science Foundation of Hunan Province (No.2020JJ4751)+1 种基金the Innovation-Driven Project of Central South University (No.2020CX031)the Basic Science Research Program of Korea (No. NRF-2016R1A6A1A03013567)。
文摘Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the novel model predictive control(MPC) for the yaw system of the wind turbines. The control horizon is adapted to the one with the best predictive performance among multiple control horizons. The adaptive MPC is demonstrated by simulations using real wind data, and its performance is compared with the baseline MPC at fixed control horizon. Results show that the adaptive MPC provides better comprehensive performance than the baseline ones at different preview time of wind directions. Therefore, the proposed adaptive technique is potentially useful for the wind turbines in the future.
基金supported by National Natural Science Foundation of China(Grant No.50776005 and 51577008)。
文摘Aiming at the problem that the existing model-based control strategy cannot fully reflect stochastic fluctuations of wind power,this paper presents a model-free adaptive predictive controller(MFAPC)for variable pitch systems with speed disturbance suppression.First,an improved small-world neural network with topology optimization is used for 15-second-ahead forecasting of wind speed,whose rolling time is 1s,and the predicted value serves as a feedforward to obtain the early compensation variation of the pitch angle.Second,a function of the multi-objective optimization at full wind speed with optimal power point tracking and minimum control variation is constructed,and an advanced one-step adaptive predictive control algorithm for wind power is proposed based on the online estimation and prediction of the time-varying pseudo partial derivative(PPD).In addition,the compound MFAPC framework is synthetically obtained,whose closed-loop effectiveness is verified by a BP-built pitch system based on the SCADA data with all working conditions.Robustness of the schemes has been analyzed in terms of parametric uncertainties and different operating conditions,and a detailed comparison is finally presented.The results show that the proposed MFAPC can not only effectively suppress the random disturbance of wind speed,but also meet the stability of wind power and the security of grid-connections for all operating conditions.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.
基金Supported by Program for New Century Excellent Talents In University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.