期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Adaptive signal control and coordination for urban traffic control in a connected vehicle environment: A review
1
作者 Jiangchen Li Liqun Peng +4 位作者 Kaizhe Hou Yong Tian Yulin Ma Shucai Xu Tony Z.Qiu 《Digital Transportation and Safety》 2023年第2期89-111,共23页
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal c... Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems. 展开更多
关键词 Urban traffic signal control adaptive signal control signal coordination Connected vehicle-based signal control
下载PDF
Vehicle actuation based short-term traffic flow prediction model for signalized intersections 被引量:8
2
作者 SUN Jian ZHANG Lun 《Journal of Central South University》 SCIE EI CAS 2012年第1期287-298,共12页
Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersectio... Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersections,a dynamic data-driven flow prediction model was developed.The model consists of two prediction components based on the signal states(red or green) for each movement at an upstream intersection.The characteristics of each signal state were carefully examined and the corresponding travel time from the upstream intersection to the approach in question at the downstream intersection was predicted.With an online turning proportion estimation method,along with the predicted travel times,the anticipated vehicle arrivals can be forecasted at the downstream intersection.The model performance was tested at a set of two signalized intersections located in the city of Gainesville,Florida,USA,using the CORSIM microscopic simulation package.Analysis results show that the model agrees well with empirical arrival data measured at 10 s intervals within an acceptable range of 10%-20%,and show a normal distribution.It is reasonably believed that the model has potential applicability for use in truly proactive real-time traffic adaptive signal control systems. 展开更多
关键词 adaptive signal control least-squared estimation microscopic simulation travel flow prediction urban arterials
下载PDF
A multi process value-based reinforcement learning environment framework for adaptive traffic signal control
3
作者 Jie Cao Dailin Huang +1 位作者 Liang Hou Jialin Ma 《Journal of Control and Decision》 EI 2023年第2期229-236,共8页
Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully use... Realising adaptive traffic signal control(ATSC)through reinforcement learning(RL)is an important means to easetraffic congestion.This paper finds the computing power of the central processing unit(CPU)cannot fully usedwhen Simulation of Urban MObility(SUMO)is used as an environment simulator for RL.We propose a multi-process framework under value-basedRL.First,we propose a shared memory mechanism to improve exploration efficiency.Second,we use the weight sharing mechanism to solve the problem of asynchronous multi-process agents.We also explained the reason shared memory in ATSC does not lead to early local optima of the agent.Wehave verified in experiments the sampling efficiency of the 10-process method is 8.259 times that of the single process.The sampling efficiency of the 20-process method is 13.409 times that of the single process.Moreover,the agent can also converge to the optimal solution. 展开更多
关键词 adaptive traffic signal control Simulation of Urban MObility MULTI-PROCESS reinforcement learning value-based
原文传递
Adaptive green traffic signal controlling using vehicular communication 被引量:3
4
作者 Erfan SHAGHAGHI Mohammad Reza JABBARPOUR +2 位作者 Rafidah MD NOOR Hwasoo YEO Jason J.JUNG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第3期373-393,共21页
The importance of using adaptive traffic signal control for figuring out the unpredictable traffic congestion in today's metropolitan life cannot be overemphasized. The vehicular ad hoc network(VANET), as an integ... The importance of using adaptive traffic signal control for figuring out the unpredictable traffic congestion in today's metropolitan life cannot be overemphasized. The vehicular ad hoc network(VANET), as an integral component of intelligent transportation systems(ITSs), is a new potent technology that has recently gained the attention of academics to replace traditional instruments for providing information for adaptive traffic signal controlling systems(TSCSs). Meanwhile, the suggestions of VANET-based TSCS approaches have some weaknesses:(1) imperfect compatibility of signal timing algorithms with the obtained VANET-based data types, and(2) inefficient process of gathering and transmitting vehicle density information from the perspective of network quality of service(Qo S). This paper proposes an approach that reduces the aforementioned problems and improves the performance of TSCS by decreasing the vehicle waiting time, and subsequently their pollutant emissions at intersections. To achieve these goals, a combination of vehicle-to-vehicle(V2V) and vehicle-to-infrastructure(V2I) communications is used. The V2 V communication scheme incorporates the procedure of density calculation of vehicles in clusters, and V2 I communication is employed to transfer the computed density information and prioritized movements information to the road side traffic controller. The main traffic input for applying traffic assessment in this approach is the queue length of vehicle clusters at the intersections. The proposed approach is compared with one of the popular VANET-based related approaches called MC-DRIVE in addition to the traditional simple adaptive TSCS that uses the Webster method. The evaluation results show the superiority of the proposed approach based on both traffic and network Qo S criteria. 展开更多
关键词 Vehicular ad hoc network(VANET) Intelligent transportation systems(ITSs) CLUSTERING adaptive traffic signal control Traffic controller Fuel consumption
原文传递
Optimization of Adaptive Transit Signal Priority Using Parallel Genetic Algorithm 被引量:15
5
作者 Guangwei Zhou Albert Gan L. David Shen 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第2期131-140,共10页
Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This paper presents an adaptive transit signal priority (TSP) strategy that applies the parallel genetic... Optimization of adaptive traffic signal timing is one of the most complex problems in traffic control systems. This paper presents an adaptive transit signal priority (TSP) strategy that applies the parallel genetic algorithm (PGA) to optimize adaptive traffic signal control in the presence of TSP. The method can optimize the phase plan, cycle length, and green splits at isolated intersections with consideration for the performance of both the transit and the general vehicles. A VISSIM (VISual SIMulation) simulation testbed was developed to evaluate the performance of the proposed PGA-based adaptive traffic signal control with TSP. The simulation results show that the PGA-based optimizer for adaptive TSP outperformed the fully actuated NEMA control in all test cases. The results also show that the PGA-based optimizer can produce TSP timing plans that benefit the transit vehicles while minimizing the impact of TSP on the general vehicles. 展开更多
关键词 adaptive traffic signal control transit signal priority parallel genetic algorithm traffic simulation traffic delay
原文传递
Traffic signal control in mixed traffic environment based on advance decision and reinforcement learning
6
作者 Yu Du Wei ShangGuan Linguo Chai 《Transportation Safety and Environment》 EI 2022年第4期96-106,共11页
Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling timeand promote intersection capacity. However, the existing RLTSC methods do not consider ... Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling timeand promote intersection capacity. However, the existing RLTSC methods do not consider the driver’s response time requirement, sothe systems often face efficiency limitations and implementation difficulties.We propose the advance decision-making reinforcementlearning traffic signal control (AD-RLTSC) algorithm to improve traffic efficiency while ensuring safety in mixed traffic environment.First, the relationship between the intersection perception range and the signal control period is established and the trust region state(TRS) is proposed. Then, the scalable state matrix is dynamically adjusted to decide the future signal light status. The decision will bedisplayed to the human-driven vehicles (HDVs) through the bi-countdown timer mechanism and sent to the nearby connected automatedvehicles (CAVs) using the wireless network rather than be executed immediately. HDVs and CAVs optimize the driving speedbased on the remaining green (or red) time. Besides, the Double Dueling Deep Q-learning Network algorithm is used for reinforcementlearning training;a standardized reward is proposed to enhance the performance of intersection control and prioritized experiencereplay is adopted to improve sample utilization. The experimental results on vehicle micro-behaviour and traffic macro-efficiencyshowed that the proposed AD-RLTSC algorithm can simultaneously improve both traffic efficiency and traffic flow stability. 展开更多
关键词 adaptive traffic signal control mixed traffic flow control advance decision-making reinforcement learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部