The factors which cause additional losses of guidance optical fiber in wound state were analyzed.A mathematical model used to analyze the macro-bend losses in the cross region producing in the precision winding proces...The factors which cause additional losses of guidance optical fiber in wound state were analyzed.A mathematical model used to analyze the macro-bend losses in the cross region producing in the precision winding process was established.For an actual guidance optical fiber,the measured data of the fiber's additional losses under low temperature and the loss curves with radius were given in the paper.The simulation results were compared with the test data.It shows that the additional losses of optical fiber caused by bending and low temperature can meet the actual requirements of the fiber optical guidance system.The established model can be used to predict the change trend of fiber losses in the winding process with a certain tensile force.展开更多
Shannon channel capacity theorem poses highest bit-rate of error free transmission over additive white Gaussian noise channel.In addition,he proved that there exists channel code that can theoretically achieve the cha...Shannon channel capacity theorem poses highest bit-rate of error free transmission over additive white Gaussian noise channel.In addition,he proved that there exists channel code that can theoretically achieve the channel capacity.Indeed fortunately,the latter researchers found some practical channel codes approaching the channel capacity with insignificant losses of spectral efficiency under ignorable bit error rate(BER).The authors note,in general,that bits of the channel codes are not independent of each other in code space.Further,we note that the modulated symbols are not independent among them,as well,in Euclidean Space.By exploiting a usage of the dependencies jointly to signal design,we can transmit two independent signal streams through an additive white Gaussian channel and separate them in Euclidean space at the receiver.The capacity of this approach is found larger than that of Shannon capacity in the same channel assumptions.The numerical results confirm the theoretical procedures.展开更多
文摘The factors which cause additional losses of guidance optical fiber in wound state were analyzed.A mathematical model used to analyze the macro-bend losses in the cross region producing in the precision winding process was established.For an actual guidance optical fiber,the measured data of the fiber's additional losses under low temperature and the loss curves with radius were given in the paper.The simulation results were compared with the test data.It shows that the additional losses of optical fiber caused by bending and low temperature can meet the actual requirements of the fiber optical guidance system.The established model can be used to predict the change trend of fiber losses in the winding process with a certain tensile force.
基金supported by two Programs of National Natural Science Foundation of China(No.61271203 and No.61531004)
文摘Shannon channel capacity theorem poses highest bit-rate of error free transmission over additive white Gaussian noise channel.In addition,he proved that there exists channel code that can theoretically achieve the channel capacity.Indeed fortunately,the latter researchers found some practical channel codes approaching the channel capacity with insignificant losses of spectral efficiency under ignorable bit error rate(BER).The authors note,in general,that bits of the channel codes are not independent of each other in code space.Further,we note that the modulated symbols are not independent among them,as well,in Euclidean Space.By exploiting a usage of the dependencies jointly to signal design,we can transmit two independent signal streams through an additive white Gaussian channel and separate them in Euclidean space at the receiver.The capacity of this approach is found larger than that of Shannon capacity in the same channel assumptions.The numerical results confirm the theoretical procedures.