We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation...We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation(ACp),10-species-mixed plantation(Tp),and 30-species-mixed plantation(THp) using the static chamber method in southern China.Four forest management treatments,including(1) understory removal(UR);(2) C.alata addition(CA);(3) understory removal and replacement with C.alata(UR+CA);and(4) control without any disturbances(CK),were applied in the above four forest plantations with three replications for each treatment.The results showed that soil CO2 fluxes rates remained at a high level during the rainy season(from April to September),followed by a rapid decrease after October reaching a minimum in February.Soil CO2 fluxes were significantly higher(P 〈 0.01) in EUp(132.6 mg/(m2.hr)) and ACp(139.8 mg/(m2.hr)) than in Tp(94.0 mg/(m2.hr)) and THp(102.9 mg/(m2.hr)).Soil CO2 fluxes in UR and CA were significantly higher(P 〈 0.01) among the four treatments,with values of 105.7,120.4,133.6 and 112.2 mg/(m2.hr) for UR+CA,UR,CA and CK,respectively.Soil CO2 fluxes were positively correlated with soil temperature(P 〈 0.01),soil moisture(P 〈 0.01),NO3?-N(P 〈 0.05),and litterfall(P 〈 0.01),indicating that all these factors might be important controlling variables for soil CO2 fluxes.This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices.展开更多
基金supported by the National Natural Science Foundation of China (No. 30630015,30771704)
文摘We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation(ACp),10-species-mixed plantation(Tp),and 30-species-mixed plantation(THp) using the static chamber method in southern China.Four forest management treatments,including(1) understory removal(UR);(2) C.alata addition(CA);(3) understory removal and replacement with C.alata(UR+CA);and(4) control without any disturbances(CK),were applied in the above four forest plantations with three replications for each treatment.The results showed that soil CO2 fluxes rates remained at a high level during the rainy season(from April to September),followed by a rapid decrease after October reaching a minimum in February.Soil CO2 fluxes were significantly higher(P 〈 0.01) in EUp(132.6 mg/(m2.hr)) and ACp(139.8 mg/(m2.hr)) than in Tp(94.0 mg/(m2.hr)) and THp(102.9 mg/(m2.hr)).Soil CO2 fluxes in UR and CA were significantly higher(P 〈 0.01) among the four treatments,with values of 105.7,120.4,133.6 and 112.2 mg/(m2.hr) for UR+CA,UR,CA and CK,respectively.Soil CO2 fluxes were positively correlated with soil temperature(P 〈 0.01),soil moisture(P 〈 0.01),NO3?-N(P 〈 0.05),and litterfall(P 〈 0.01),indicating that all these factors might be important controlling variables for soil CO2 fluxes.This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices.