期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Predictive Vegetation Mapping Approach Based on Spectral Data, DEM and Generalized Additive Models 被引量:5
1
作者 SONG Chuangye HUANG Chong LIU Huiming 《Chinese Geographical Science》 SCIE CSCD 2013年第3期331-343,共13页
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege... This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision. 展开更多
关键词 vegetation mapping Generalized additive models (GAMs) SPOT Receiver Operating Characteristic (ROC) GeneralizedRegression Analysis and Spatial Predictions (GRASP) Huanghe River Delta
下载PDF
Simulating Potential Distribution of Tamarix chinensis in Yellow River Delta by Generalized Additive Models
2
作者 SONG Chuangye HUANG Chong LIU Gaohuan 《湿地科学》 CSCD 2010年第4期347-353,共7页
There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution i... There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution in the Yellow River Delta,641 vegetation samples and 964 soil samples were collected in the area in October of 2004,2005,2006 and 2007.The contents of soil organic matter,total phosphorus,salt,and soluble potassium were determined.Then,the analyzed data were interpolated into spatial raster data by Kriging interpolation method.Meanwhile,the digital elevation model,soil type map and landform unit map of the Yellow River Delta were also collected.Generalized Additive Models(GAMs) were employed to build species-environment model and then simulate the potential distribution of T.chinensis.The results indicated that the distribution of T.chinensis was mainly limited by soil salt content,total soil phosphorus content,soluble potassium content,soil type,landform unit,and elevation.The distribution probability of T.chinensis was produced with a lookup table generated by Grasp Module(based on GAMs) in software ArcView GIS 3.2.The AUC(Area Under Curve) value of validation and cross-validation of ROC(Receive Operating Characteristic) were both higher than 0.8,which suggested that the established model had a high precision for predicting species distribution. 展开更多
关键词 Yellow River Delta Tamarix chinensis Generalized additive models
下载PDF
Modeling and Fault Monitoring of Bioprocess Using Generalized Additive Models (GAMs) and Bootstrap
3
作者 郑蓉建 周林成 潘丰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1180-1183,共4页
Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on ri... Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation. 展开更多
关键词 bioprocess fault monitoring generalized additive model glutamic acid fermentation BOOTSTRAP MODELING
下载PDF
Longitudinal height-diameter curves for Norway spruce, Scots pine and silver birch in Norway based on shape constraint additive regression models 被引量:1
4
作者 Matthias Schmidt Johannes Breidenbach Rasmus Astrup 《Forest Ecosystems》 SCIE CSCD 2018年第2期109-125,共17页
Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pe... Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge. 展开更多
关键词 Height-diameter curve Norway spruce Scots pine Silver birch Norwegian national forest inventory Shape constrained additive models
下载PDF
Profile Statistical Inference for Partially Linear Additive Models with a Diverging Number of Parameters
5
作者 WANG Xiuli ZHAO Shengli WANG Mingqiu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第6期1747-1766,共20页
This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squar... This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squares estimation for the parametrie components with the nonparametric functions being estimated by basis function approximations.The consistency and asymptotic normality of the restricted estimator are given under some certain conditions.The authors construct a profile likelihood ratio test statistic to test the validity of the linear constraints on the parametrie components,and demonstrate that it follows asymptotically chi-squared distribution under the null and alternative hypo theses.The finite sample performance of the proposed method is illus trated by simulation studies and a data analysis. 展开更多
关键词 B-spline basis constrained profile least-squares estimation diverging partially linear additive models profile likelihood ratio
原文传递
Functional singular component analysis based functional additive models
6
作者 ZHANG Tao WANG QiHua 《Science China Mathematics》 SCIE CSCD 2016年第12期2443-2462,共20页
We propose a method which uses functional singular component to establish functional additive models. The proposed methodology reduces the curve regression problem to ordinary(i.e., scalar) additive regression problem... We propose a method which uses functional singular component to establish functional additive models. The proposed methodology reduces the curve regression problem to ordinary(i.e., scalar) additive regression problems of the singular components of the predictor process and response process. Consistency of estimators for the nonparametric function and prediction are proved, respectively. A simulation study is conducted to investigate the finite sample performances of the proposed estimators. 展开更多
关键词 functional data functional additive models functional singular component analysis
原文传递
Probabilistic Precipitation Forecasting Based on Ensemble Output Using Generalized Additive Models and Bayesian Model Averaging 被引量:9
7
作者 杨赤 严中伟 邵月红 《Acta meteorologica Sinica》 SCIE 2012年第1期1-12,共12页
A probabilistic precipitation forecasting model using generalized additive models (GAMs) and Bayesian model averaging (BMA) was proposed in this paper. GAMs were used to fit the spatial-temporal precipitation mode... A probabilistic precipitation forecasting model using generalized additive models (GAMs) and Bayesian model averaging (BMA) was proposed in this paper. GAMs were used to fit the spatial-temporal precipitation models to individual ensemble member forecasts. The distributions of the precipitation occurrence and the cumulative precipitation amount were represented simultaneously by a single Tweedie distribution. BMA was then used as a post-processing method to combine the individual models to form a more skillful probabilistic forecasting model. The mixing weights were estimated using the expectation-maximization algorithm. The residual diagnostics was used to examine if the fitted BMA forecasting model had fully captured the spatial and temporal variations of precipitation. The proposed method was applied to daily observations at the Yishusi River basin for July 2007 using the National Centers for Environmental Prediction ensemble forecasts. By applying scoring rules, the BMA forecasts were verified and showed better performances compared with the empirical probabilistic ensemble forecasts, particularly for extreme precipitation. Finally, possible improvements and a^plication of this method to the downscaling of climate change scenarios were discussed. 展开更多
关键词 Bayesian model averaging generalized additive model probabilistic precipitation forecasting TIGGE Tweedie distribution
原文传递
Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce 被引量:3
8
作者 Natalya Pya Matthias Schmidt 《Forest Ecosystems》 SCIE CSCD 2016年第2期112-125,共14页
Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest ... Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction. 展开更多
关键词 Height-diameter curve Norway spruce Shape constrained additive models Impact of climate change Varying coefficient models
下载PDF
Inference Procedures on the Generalized Poisson Distribution from Multiple Samples: Comparisons with Nonparametric Models for Analysis of Covariance (ANCOVA) of Count Data
9
作者 Maha Al-Eid Mohamed M. Shoukri 《Open Journal of Statistics》 2021年第3期420-436,共17页
Count data that exhibit over dispersion (variance of counts is larger than its mean) are commonly analyzed using discrete distributions such as negative binomial, Poisson inverse Gaussian and other models. The Poisson... Count data that exhibit over dispersion (variance of counts is larger than its mean) are commonly analyzed using discrete distributions such as negative binomial, Poisson inverse Gaussian and other models. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial and the Poisson inverse Gaussian have variance larger than the mean and therefore are more appropriate to model over-dispersed count data. As an alternative to these two models, we shall use the generalized Poisson distribution for group comparisons in the presence of multiple covariates. This problem is known as the ANCOVA and is solved for continuous data. Our objectives were to develop ANCOVA using the generalized Poisson distribution, and compare its goodness of fit to that of the nonparametric Generalized Additive Models. We used real life data to show that the model performs quite satisfactorily when compared to the nonparametric Generalized Additive Models. 展开更多
关键词 Count Regression Over Dispersion Generalized Linear models Analysis of Covariance Generalized additive models
下载PDF
Modeling hot strip rolling process under framework of generalized additive model 被引量:3
10
作者 LI Wei-gang YANG Wei +2 位作者 ZHAO Yun-tao YAN Bao-kang LIU Xiang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2379-2392,共14页
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener... This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling. 展开更多
关键词 industrial big data generalized additive model mechanical property prediction deformation resistance prediction
下载PDF
The Cox-Aalen Models as Framework for Construction of Bivariate Probability Distributions, Universal Representation 被引量:1
11
作者 Jerzy K. Filus 《Journal of Statistical Science and Application》 2017年第2期56-63,共8页
Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict o... Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model positive stochastic dependences only with the general assumption that the underlying two marginal random variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general characterization of bivariate probability distributions that may play similar role as the copula methodology. Examples of reliability and biomedical applications are given. 展开更多
关键词 Cox model Aalen additive hazards model construction of bivariate probability distributions givenmarginal distributions "joiner" as dependence function "connecting" the marginals general characterization ofbivariate distributions similarity to the copula methodology reliability and biomedical applications
下载PDF
Study of monthly variations in primary production and their relationships with environmental factors in the Daya Bay based on a general additive model
12
作者 KANG Jianhua HUANG Hao +2 位作者 LI Weiwen LIN Yili CHEN Xingqun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第12期107-117,共11页
In this study, the horizontal and vertical distribution of primary production(PP) and its monthly variations were described based on field data collected from the Daya Bay in January–December of 2016. The relationshi... In this study, the horizontal and vertical distribution of primary production(PP) and its monthly variations were described based on field data collected from the Daya Bay in January–December of 2016. The relationships between PP and environmental factors were analyzed using a general additive model(GAM). Significant seasonal differences were observed in the horizontal distribution of PP, while vertical distribution showed a relatively consistent unimodal pattern. The monthly average PP(calculated by carbon) ranged from 48.03 to 390.56 mg/(m~2·h),with an annual average of 182.77 mg/(m~2·h). The highest PP was observed in May and the lowest in November.Additionally, the overall trend in PP was spring>summer>winter>autumn, and spring PP was approximately three times that of autumn PP. GAM analysis revealed that temperature, bottom salinity, phytoplankton, and photosynthetically active radiation(PAR) had no significant relationships with PP, while longitude, depth, surface salinity, chlorophyll a(Chl a) and transparency were significantly correlated with PP. Overall, the results presented herein indicate that monsoonal changes and terrestrial and offshore water systems have crucial effects on environmental factors that are associated with PP changes. 展开更多
关键词 primary production environmental factors general additive model monthly variations Daya Bay
下载PDF
ADDITIVE HAZARDS MODEL WITH TIME-VARYING REGRESSION COEFFICIENTS
13
作者 黄彬 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1318-1326,共9页
This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco... This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful. 展开更多
关键词 additive hazards model time-varying coefficients weighted local pseudoscore function asymptotic property
下载PDF
Modelling the Sorption of 63Ni to Granitic Materials: Application of the Component Additive Model
14
作者 Fidelis Sameh Ebong Nick Evans 《Journal of Environmental Science and Engineering(B)》 2012年第3期281-292,共12页
The component additive modelling approach is based on summing the results from models already calibrated with pure mineral phases. The summation can occur as the sum of results for thermodynamic surface speciation mod... The component additive modelling approach is based on summing the results from models already calibrated with pure mineral phases. The summation can occur as the sum of results for thermodynamic surface speciation models or as the sum of pseudo-thermodynamic models for adsorption on individual mineral phases. Static batch sorption experiments of 63Ni are with different granitic rocks and component minerals. XRD analyses have been used to calculate the percentage mineralogical composition of the granitic rocks. Sorption data has been modelled using non electrostatic correction models to obtain Rdfor the granitic rocks and mineral. Ra values for the granitic rocks predicted from the component additive model have been compared to experimental values. Results showed that predicted Rd values for granite adamellite, biotite granite and rapakivi granite were identical to the experimentally determined values, whereas, for graphic granite and grey Granite, the predicted and experimentally determined Ra values were much different. The results also showed a greater contribution to the bulk Raby feldspar while quartz showed the least contribution to the Rd. 展开更多
关键词 Radionuclide sorption 63Ni component additive model.
下载PDF
Fitting Generalized Additive Logistic Regression Model with GAM Procedure
15
作者 Suresh Kumar Sharma Rashmi Aggarwal Kanchan Jain 《Journal of Mathematics and System Science》 2013年第9期442-453,共12页
In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes... In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis. 展开更多
关键词 Logistic model iterative generalized additive model weighted least squares cubic splines.
下载PDF
Modeling the effect of stand and site characteristics on the probability of mistletoe infestation in Scots pine stands using remote sensing data
16
作者 Luiza Tymińska-Czabańska Piotr Janiec +5 位作者 Pawel Hawrylo Jacek Slopek Anna Zielonka Pawel Netzel Daniel Janczyk Jaroslaw Socha 《Forest Ecosystems》 SCIE CSCD 2024年第3期296-306,共11页
Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands i... Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance. 展开更多
关键词 Generalized additive models Tree infestation Mistletoe occurrence ALS UAV Scots pine
下载PDF
Grouping tree species to estimate basal area increment in temperate multispecies forests in Durango,Mexico
17
作者 Jaime Roberto Padilla-Martínez Carola Paul +2 位作者 Kai Husmann Jose Javier Corral-Rivas Klaus von Gadow 《Forest Ecosystems》 SCIE CSCD 2024年第1期1-13,共13页
Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management... Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests. 展开更多
关键词 Temperate multispecies forests Cluster analysis Basal area increment Generalized additive models
下载PDF
From furnace up to freezer:Elevational patterns of plant diversity in Mount Palvar,a semi-arid Irano-Turanian mountain range of southwest Asia
18
作者 Atefeh GHORBANALIZADEH Moslem DOOSTMOHAMMADI 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2236-2248,共13页
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re... Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution. 展开更多
关键词 Elevational gradient Biodiversity ENDEMIC Generalized additive model Hump-shaped pattern Irano-Turanian region
下载PDF
Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India
19
作者 Suchitra PANDEY Geetilaxmi MOHAPATRA Rahul ARORA 《Regional Sustainability》 2024年第2期103-122,共20页
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t... Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions. 展开更多
关键词 Climate change Generalized additive model(GAM) Depth to groundwater level(DGWL) Climatic and anthropogenic variables Arid and semi-arid regions
下载PDF
The study on fishing ground of neon flying squid, Ommastrephes bartrami,and ocean environment based on remote sensing data in the Northwest Pacific Ocean 被引量:17
20
作者 樊伟 伍玉梅 崔雪森 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第2期408-414,共7页
The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll c... The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll concentration (Chl-α) and sea surface height (SSH) from NASA, as well as the yields of neon flying squid in the North Pacific Ocean. The results show that the favorable temperature for neon flying squid living is 10℃-22℃ and the favorite temperature is between 15℃-17℃. The Chl-α concentration is 0.1-0.6 mg/m^3. When Chl-α concentration changes to 0.12-0.14 mg/m^3, the probability of forming fishing ground becomes very high. In most fishing grounds, the SSH is higher than the mean SSH. The generalized additive model (GAM) was applied to analyze the correlations between neon flying squid and ocean environmental factors. Every year, squids migrate northward from June to August and return southward during October-November, and the characteristics of the both migrations are very different. When squids migrate to the north, most relationships between the yields and SST are positive. The relationships are negative when squids move to southward. The relationships between the yields and Chl-a concentrations are negative from June to October, and insignificant in November. There is no obvious correlation between the catches of squid and longitude, but good with latitude. 展开更多
关键词 Ommastrephes bartrami generalized additive models sea surface temperature CHLOROPHYLL-A
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部