A signature-and-verification-based method, automatic peer-to-peer anti-spoofing (APPA), is pro- posed to prevent IP source address spoofing. In this method, signatures are tagged into the packets at the source peer,...A signature-and-verification-based method, automatic peer-to-peer anti-spoofing (APPA), is pro- posed to prevent IP source address spoofing. In this method, signatures are tagged into the packets at the source peer, and verified and removed at the verification peer where packets with incorrect signatures are filtered. A unique state machine, which is used to generate signatures, is associated with each ordered pair of APPA peers. As the state machine automatically transits, the signature changes accordingly. KISS ran- dom number generator is used as the signature generating algorithm, which makes the state machine very small and fast and requires very low management costs. APPA has an intra-AS (autonomous system) level and an inter-AS level. In the intra-AS level, signatures are tagged into each departing packet at the host and verified at the gateway to achieve finer-grained anti-spoofing than ingress filtering. In the inter-AS level, signatures are tagged at the source AS border router and verified at the destination AS border router to achieve prefix-level anti-spoofing, and the automatic state machine enables the peers to change signatures without negotiation which makes APPA attack-resilient compared with the spoofing prevention method. The results show that the two levels are both incentive for deployment, and they make APPA an integrated anti-spoofing solution.展开更多
Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the ...Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.展开更多
基金Supported by the Basic Research Foundation of the Tsinghua National Laboratory for Information Science and Technology (TNList)the National Key Basic Research and Development (973) Program of China (No. 2008BAH37B02)
文摘A signature-and-verification-based method, automatic peer-to-peer anti-spoofing (APPA), is pro- posed to prevent IP source address spoofing. In this method, signatures are tagged into the packets at the source peer, and verified and removed at the verification peer where packets with incorrect signatures are filtered. A unique state machine, which is used to generate signatures, is associated with each ordered pair of APPA peers. As the state machine automatically transits, the signature changes accordingly. KISS ran- dom number generator is used as the signature generating algorithm, which makes the state machine very small and fast and requires very low management costs. APPA has an intra-AS (autonomous system) level and an inter-AS level. In the intra-AS level, signatures are tagged into each departing packet at the host and verified at the gateway to achieve finer-grained anti-spoofing than ingress filtering. In the inter-AS level, signatures are tagged at the source AS border router and verified at the destination AS border router to achieve prefix-level anti-spoofing, and the automatic state machine enables the peers to change signatures without negotiation which makes APPA attack-resilient compared with the spoofing prevention method. The results show that the two levels are both incentive for deployment, and they make APPA an integrated anti-spoofing solution.
文摘Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise precautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. This enables the attacker to inspect victim’s data packets, extract valuable data (like passwords) that belong to the victim and manipulate these data packets. We suggest and implement a defense mechanism and tool that counters this attack, warns the user, and exposes some information about the attacker to isolate him. GNU/Linux is chosen as an operating system to implement both the attack and the defense tools. The results show the success of the defense mechanism in detecting the ARP related attacks in a very simple and efficient way.