This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have ...This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11074125)the Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJA140006)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB140003)the Student Research Foundation of the Jiangsu University,China(Grant Nos.2010074 and 09A101)
文摘This paper studies quantitatively the generation of Lamb waves in thin bonded plates subjected to laser illumination, after considering the viscoelasticity of the adhesive layer. The displacements of such plates have been calculated in the frequency domain by using the finite element method, and the time domain response has been reconstructed by applying an inverse fast Fourier transform. Numerical results are presented showing the normal surface displacement for several configurations: a single aluminum plate, a three-layer bonded plate, and a two-layer plate. The characteristics of the laser-generated Lamb waves for each particular case have been investigated. In addition, the sensitivity of the transient responses to variations of material properties (elastic modulus, viscoelastic modulus, and thickness) of the adhesive layer has been studied in detail.