期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
SUPERCONVERGENCES OF THE ADINI'S ELEMENT FORSECOND ORDER EQUATION 被引量:1
1
作者 Ping Luo(Department of Computer Science and Technology, Qinghua University, Beijing 100084,China)Qun Lin(Institute of Systems Science, Academia Sinica, Beijing, 100080, China) 《Journal of Computational Mathematics》 SCIE CSCD 1999年第6期569-574,共6页
n this papers the asymptotic error expansions of Adini's element for the secondorder imhomogeneous Neumann problem are given and the superconvergence estimations are obtained. Moreover, a numerical example to supp... n this papers the asymptotic error expansions of Adini's element for the secondorder imhomogeneous Neumann problem are given and the superconvergence estimations are obtained. Moreover, a numerical example to support our theoreticalanalysis is reported. 展开更多
关键词 adini's element superconvergence estimation asymptotic expansion.
原文传递
Highly efficient H^1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation 被引量:7
2
作者 石东洋 廖歆 唐启立 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期897-912,共16页
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ... A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method. 展开更多
关键词 parabolic integro-differential equation H1-Galerkin mixed finite elementmethod (MFEM) linear triangular element asymptotic expansion superconvergence andextrapolation
下载PDF
Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations
3
作者 Cunyun Nie Shi Shu +1 位作者 Haiyuan Yu Juan Wu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第2期408-423,共16页
Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energ... Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids.Furthermore,we prove that the approximate derivatives are convergent of order two.Finally,numerical examples verify the theoretical results. 展开更多
关键词 Isoparametric bilinear finite volume element scheme asymptotic expansion high accuracy combination formula superconvergence
原文传递
拟线性抛物问题半离散有限元解的超收敛、渐近展式与外推
4
作者 陈新明 《长沙铁道学院学报》 CSCD 1991年第4期73-79,共7页
本文利用[5,6]所作的正规Green函数估计,得到了拟线性抛物问题半离散有限元解的超收敛、渐近展式与外推.
关键词 有限元 半离散 超收敛 抛物方程
下载PDF
RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS 被引量:2
5
作者 Tang Liu Ningning Yan Shuhua Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2010年第1期55-71,共17页
Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolat... Asymptotic error expansions in H^1-norm for the bilinear finite element approximation to a class of optimal control problems are derived for rectangular meshes. With the rectan- gular meshes, the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied. The higher order numerical approximations are used to generate a posteriori error estimators for the finite element approximation. 展开更多
关键词 Optimal control problem Finite element methods asymptotic error expansions Defect correction A posteriori error estimates.
原文传递
高次三角形有限元外推的探讨 被引量:4
6
作者 周俊明 林群 《数学的实践与认识》 CSCD 北大核心 2008年第5期99-106,共8页
探讨泊松方程高次三角形有限元外推公式.为此先推导离散格林函数的权模估计和有限元解的渐近不等式展开,然后给出公式的证明.
关键词 权模估计 渐近不等式展开 有限元外推
原文传递
一类广义插值函数与广义有限元方法的后验估计 被引量:2
7
作者 舒适 黄云清 喻海元 《计算数学》 CSCD 北大核心 2000年第1期113-120,共8页
In this paper, we discuss a generalized finite element interpolation problem and obtain the asymptotic expansion of the interpolation function. Based on these results, the error asymptotic expansion and superconvergen... In this paper, we discuss a generalized finite element interpolation problem and obtain the asymptotic expansion of the interpolation function. Based on these results, the error asymptotic expansion and superconvergence result of the generalized finite element approximation are derived. Finallym using the Superconvergent Patch Recovery Technique (SPR) proposed by Zienkiewicz & Zhu, we get the superconvergent recovery approximation and the posteriori error estimates to the flux. The numerical test convinced our analysis. 展开更多
关键词 广义有限元 后验估计 渐近展开式 广义插值函数
原文传递
变系数情形下Criss-Cross三角形线性元的渐近展式与超收敛 被引量:1
8
作者 喻海元 黄云清 《计算数学》 CSCD 北大核心 2007年第3期325-336,共12页
本文讨论了二阶椭圆方程变系数情形下Criss-Cross三角形线性元的超收敛性质,得到了有限元的渐进展式、外推及高精度组合公式等结果.
关键词 有限元渐近展式 有限元外推 高精度组合公式 超收敛
原文传递
EXTRAPOLATION AND A-POSTERIORI ERROR ESTIMATORS OF PETROV-GALERKIN METHODS FOR NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 被引量:2
9
作者 Shu-hua Zhang (Department of Mathematical Sciences, University of Alberta, Edrmonton, Alberta, Canada T6G 2G1) Tao Lin (Department of Mathematics, Virginia Tech, Blacksburg VA 24061) Yan-ping Lin (Department of Mathematical Sciences, University of Alberta 《Journal of Computational Mathematics》 SCIE CSCD 2001年第4期407-422,共16页
In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initial value problem for a nonlinear Volterra in... In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initial value problem for a nonlinear Volterra integro-differential equation. As by-products, we will also show that these enhanced approximations can be used to form a class of posteriori estimators for this Petrov-Galerkin finite element method. Numerical examples are supplied to illustrate the theoretical results. 展开更多
关键词 Volterra integro-differential equations Petrov-Galerkin finite element methods asymptotic expansions Interpolation post-processing A-posteriori error estimators.
原文传递
THE EXTRAPOLATION METHOD FOR A CLASS OF NON-SMOOTH FREDHOLM INTEGRAL EQUATIONS
10
作者 SHI Jun (Institute of Systems Science,Academia Sinica,Beijing 100080,China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1992年第1期33-41,共9页
For a class of non-smooth Fredholm integral equations we prove thatRichardson extrapolation method can be used to increase accuracy for finite ele-ment methods.On the basis of local refinement mesh,a superconvergence ... For a class of non-smooth Fredholm integral equations we prove thatRichardson extrapolation method can be used to increase accuracy for finite ele-ment methods.On the basis of local refinement mesh,a superconvergence result isshown.Our theory also covers a class of non-smooth Wiener-Hopf equations andan application includes the calculation in certain linear elastic fracture problems. 展开更多
关键词 Finite element superconvergence EXTRAPOLATION method local REFINEMENT mesh error asymptotic expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部