Bone marrow mesenchymal stem cells(BMSCs)are non-hematopoietic multipotent stem cells capable of differentiating into mature cells.Isoquercetin,an extract from natural sources,has shown promise as a potential treatmen...Bone marrow mesenchymal stem cells(BMSCs)are non-hematopoietic multipotent stem cells capable of differentiating into mature cells.Isoquercetin,an extract from natural sources,has shown promise as a potential treatment for osteoporosis.To investigate the therapeutic effects of isoquercetin on osteoporosis,bone marrow mesenchymal stem cells(BMSCs)were cultured in vitro,and osteogenesis or adipogenesis was induced in the presence of isoquercetin for 14 days.We evaluated cell viability,osteogenic and adipogenic differentiation,as well as mRNA expression levels of Runx2,Alpl,and OCN in osteoblasts,and mRNA expression levels of Pparγ,Fabp4,and Cebpαin adipocytes.The results showed that isoquercetin dose-dependently increased cell viability and promoted osteogenic differentiation,as evidenced by Alizarin Red and alkaline phosphatase staining and mRNA expression levels of Runx2,Alpl,and OCN in osteoblasts(P<0.05).In contrast,isoquercetin inhibited adipogenic differentiation and decreased the mRNA expres-sion levels of Pparγ,Fabp4,and Cebpαin adipocytes(P<0.05).In vivo,isoquercetin treatment increased bone quan-tity and density in an osteoporosis model mice group,as determined byμCT scanning and immunohistochemistry(P<0.05).These findings suggest that isoquercetin may have therapeutic potential for osteoporosis by promoting the proliferation and differentiation of BMSCs towards osteoblasts while inhibiting adipogenic differentiation.展开更多
基金the National Natural Science Foundation of China(Grant Nos.22276221,21675176)the Fundamental Research Funds for the Central Universities,and South-Central Minzu University(Grant No.CZP21002)for financial support.
文摘Bone marrow mesenchymal stem cells(BMSCs)are non-hematopoietic multipotent stem cells capable of differentiating into mature cells.Isoquercetin,an extract from natural sources,has shown promise as a potential treatment for osteoporosis.To investigate the therapeutic effects of isoquercetin on osteoporosis,bone marrow mesenchymal stem cells(BMSCs)were cultured in vitro,and osteogenesis or adipogenesis was induced in the presence of isoquercetin for 14 days.We evaluated cell viability,osteogenic and adipogenic differentiation,as well as mRNA expression levels of Runx2,Alpl,and OCN in osteoblasts,and mRNA expression levels of Pparγ,Fabp4,and Cebpαin adipocytes.The results showed that isoquercetin dose-dependently increased cell viability and promoted osteogenic differentiation,as evidenced by Alizarin Red and alkaline phosphatase staining and mRNA expression levels of Runx2,Alpl,and OCN in osteoblasts(P<0.05).In contrast,isoquercetin inhibited adipogenic differentiation and decreased the mRNA expres-sion levels of Pparγ,Fabp4,and Cebpαin adipocytes(P<0.05).In vivo,isoquercetin treatment increased bone quan-tity and density in an osteoporosis model mice group,as determined byμCT scanning and immunohistochemistry(P<0.05).These findings suggest that isoquercetin may have therapeutic potential for osteoporosis by promoting the proliferation and differentiation of BMSCs towards osteoblasts while inhibiting adipogenic differentiation.