To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n=...To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.展开更多
Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: d...Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell(uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.展开更多
Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that in...Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that injecting adipose-derived stem cells(ADSCs)into the cavernosa could repair the damaged cavernous nerves,but the erectile function of the treated rats could not be restored to a normal level.We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor(lenti-rBDNF)in a rat model of cavernous nerve injury.The rats were equally and randomly divided into four groups.In the control group,bilateral cavernous nerves were isolated but not injured.In the bilateral cavernous nerve injury group,bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes.In the ADSCGFP and ADSCrBDNF groups,after injury with a hemostat clamp for 2 minutes,rats were injected with ADSCs infected with lenti-GFP(1×106 in 20μL)and lenti-rBDNF(1×106 in 20μL),respectively.Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures.Then,penile tissues were collected for histological detection and western blot assay.Results demonstrated that compared with the bilateral cavernous nerve injury group,erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups,and to a greater degree in the ADSCrBDNF group.Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group.Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group.These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury.This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University,China(approval No.2017-1638)on June 20,2017.展开更多
The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model...The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.展开更多
Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secr...Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.展开更多
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering...Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice.展开更多
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou...In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.展开更多
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri...BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.展开更多
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed ra...To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.展开更多
Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage,...Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.展开更多
OBJECTIVE: To identify global research trends in the use of nerve conduits for peripheral nerve injury repair. DATA RETRIEVAL: Numerous basic and clinical studies on nerve conduits for peripheral nerve injury repair...OBJECTIVE: To identify global research trends in the use of nerve conduits for peripheral nerve injury repair. DATA RETRIEVAL: Numerous basic and clinical studies on nerve conduits for peripheral nerve injury repair were performed between 2002-2011. We performed a bibliometric analysis of the institutions, authors, and hot topics in the field, from the Web of Science, using the key words peripheral nerve and conduit or tube. SELECTION CRITERIA: Inclusion criteria: peer-reviewed published articles on nerve conduits for peripheral nerve injury repair, indexed in the Web of Science; original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. Exclusion criteria: articles requiring manual searching or telephone access; documents not published in the public domain; and several corrected papers. MAIN OUTCOME MEASURES: (a) Annual publication output; (b) publication type; (c) publication by research field; (d) publication by journal; (e) publication by funding agency; (f) publication by author; (g) publication by country and institution; (h) publications by institution in China; (i) most-cited papers. RESULTS: A total of 793 publications on the use of nerve conduits for peripheral nerve injury repair were retrieved from the Web of Science between 2002-2011. The number of publications gradually increased over the 10-year study period. Articles constituted the main type of publication. The most prolific journals were Biomaterials, Microsurge and Joumal of Biomedical Materials Research PartA. The National Natural Science Foundation of China supported 27 papers, more than any other funding agency. Of the 793 publications, almost half came from American and Chinese authors and institutions. CONCLUSION: Nerve conduits have been studied extensively for peripheral nerve regeneration; however, many problems remain in this field, which are difficult for researchers to reach a consensus.展开更多
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation,large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit.Cell based therapies provide a novel treat...Due to the limitations in autogenous nerve grafting or Schwann cell transplantation,large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit.Cell based therapies provide a novel treatment for peripheral nerve injuries.In this study,we first experimented an optimal scaffold material synthesis protocol,from where we selected the 10%GFD formula(10%GelMA hydrogel,recombinant human basic fibroblast growth factor and dental pulp stem cells(DPSCs))to fill a cellulose/soy protein isolate composite membrane(CSM)tube to construct a third generation of nerve regeneration conduit,CSM-GFD.Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model.After 12 week post implant surgery,at histologic level,we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers.At physical level,CSM-GFD achieved functional recovery assessed by a sciatic functional index study.In both levels,CSM-GFD performed like what gold standard,the nerve autograft,could do.Further,we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD.In conclusion,we claimed that this third-generation nerve regeneration conduit,CSM-GFD,could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries.展开更多
文摘To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.
基金supported by the Summer Research Funding of Medical Student Research Fellowships at Dartmouth Geisel School of Medicine to RZ
文摘Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell(uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.
基金supported by the Natural Science Foundation of Hubei Province of China,No.2017CFB176(to CCY)the Fundamental Research Funds for The Central Hospital of Wuhan of China,No.YB16A01(to CCY)
文摘Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that injecting adipose-derived stem cells(ADSCs)into the cavernosa could repair the damaged cavernous nerves,but the erectile function of the treated rats could not be restored to a normal level.We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor(lenti-rBDNF)in a rat model of cavernous nerve injury.The rats were equally and randomly divided into four groups.In the control group,bilateral cavernous nerves were isolated but not injured.In the bilateral cavernous nerve injury group,bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes.In the ADSCGFP and ADSCrBDNF groups,after injury with a hemostat clamp for 2 minutes,rats were injected with ADSCs infected with lenti-GFP(1×106 in 20μL)and lenti-rBDNF(1×106 in 20μL),respectively.Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures.Then,penile tissues were collected for histological detection and western blot assay.Results demonstrated that compared with the bilateral cavernous nerve injury group,erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups,and to a greater degree in the ADSCrBDNF group.Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group.Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group.These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury.This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University,China(approval No.2017-1638)on June 20,2017.
基金the National Basic Research Program of China(973Program),No.2007CB512705the General Program for Youths of the National Natural Science Foundation of China,No.30801464
文摘The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.
基金supported by Military Medical Science&Technology Youth Training Program,No. 19QNP005President Foundation of Nanfang Hospital,Southern Medical University,No. 2020B028 (both to JY)。
文摘Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,No.31040043,31671248(to NH),No.81171146,81372044,30971526(to BGJ)the Chinese National Ministry of Science and Technology(973 Project),No.2014CB542201(to PXZ)+4 种基金the Ministry of Education Innovation Team,China,No.IRT1201(to PXZ)the Fostering Young Scholars of Peking University Health Science Center,China,No.BMU2017PY013(to PXZ)the Chinese National General Program of National Natural Science Fund,China(to PXZ)the Beijing City Science&Technology New Star Cross Project,China,No.2018019(to PXZ)the National Natural Science Foundation of China,No.31771322,31571235,51373023,21171019,31640045,31571236,31471144,31100860,31371210(to PXZ)
文摘Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice.
基金supported by Medical Scientific Research Program of Hebei Province in 2010, Hebei Provincial Health Department, No. 20100131
文摘In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
基金the National Natural Science Foundation of China, No. 3067104130870642
文摘BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.
基金funded by Shefa Neurosciences Research Center at Khatam Al-Anbia Hospital,Tehran,Iran(Grant#86-N-105)
文摘To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.
基金supported,in part,by a research grant from Baylor Scott&White Health Central Texas Foundation and NIH grant R01-NS067435(JHH)
文摘Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
文摘OBJECTIVE: To identify global research trends in the use of nerve conduits for peripheral nerve injury repair. DATA RETRIEVAL: Numerous basic and clinical studies on nerve conduits for peripheral nerve injury repair were performed between 2002-2011. We performed a bibliometric analysis of the institutions, authors, and hot topics in the field, from the Web of Science, using the key words peripheral nerve and conduit or tube. SELECTION CRITERIA: Inclusion criteria: peer-reviewed published articles on nerve conduits for peripheral nerve injury repair, indexed in the Web of Science; original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. Exclusion criteria: articles requiring manual searching or telephone access; documents not published in the public domain; and several corrected papers. MAIN OUTCOME MEASURES: (a) Annual publication output; (b) publication type; (c) publication by research field; (d) publication by journal; (e) publication by funding agency; (f) publication by author; (g) publication by country and institution; (h) publications by institution in China; (i) most-cited papers. RESULTS: A total of 793 publications on the use of nerve conduits for peripheral nerve injury repair were retrieved from the Web of Science between 2002-2011. The number of publications gradually increased over the 10-year study period. Articles constituted the main type of publication. The most prolific journals were Biomaterials, Microsurge and Joumal of Biomedical Materials Research PartA. The National Natural Science Foundation of China supported 27 papers, more than any other funding agency. Of the 793 publications, almost half came from American and Chinese authors and institutions. CONCLUSION: Nerve conduits have been studied extensively for peripheral nerve regeneration; however, many problems remain in this field, which are difficult for researchers to reach a consensus.
基金supported by the National Natural Science Funding of China(81701032,81871503)the Wenzhou Science and Technology Association Project,the Wenzhou Major Scientific and Technological Innovation Key Medical and Health Project(ZY2019010)+4 种基金the Wenzhou Medical University grant(QTJ16026)Wenzhou Science and Technology Association Project,Wenzhou Basic Research Project(Y20180131)Zhejiang Province Program of the Medical and Health Science and Technology(2018KY537)Zhejiang Natural Science Foundation(LGF18C100002)Zhejiang Xinmiao Talents Program(2018R413186).
文摘Due to the limitations in autogenous nerve grafting or Schwann cell transplantation,large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit.Cell based therapies provide a novel treatment for peripheral nerve injuries.In this study,we first experimented an optimal scaffold material synthesis protocol,from where we selected the 10%GFD formula(10%GelMA hydrogel,recombinant human basic fibroblast growth factor and dental pulp stem cells(DPSCs))to fill a cellulose/soy protein isolate composite membrane(CSM)tube to construct a third generation of nerve regeneration conduit,CSM-GFD.Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model.After 12 week post implant surgery,at histologic level,we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers.At physical level,CSM-GFD achieved functional recovery assessed by a sciatic functional index study.In both levels,CSM-GFD performed like what gold standard,the nerve autograft,could do.Further,we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD.In conclusion,we claimed that this third-generation nerve regeneration conduit,CSM-GFD,could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries.