Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ...Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.展开更多
To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity ne...To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity network-based reasoning to exploit the implicit similarity, and the feedback from the context to validate the similarity measures. A new similarity measure is also presented to construct concept similarity network, which scales the similarity using the relative depth of the least common super-concept between any two concepts. Subsequently, the graph theory, instead of predefined knowledge rules, is applied to perform the similarity network-based reasoning such that the knowledge acquisition can be avoided. The framework has been applied to text categorization and visualization of high dimensional data. Theory analysis and the experimental results validate the proposed framework.展开更多
There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities be...There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.展开更多
A set in Rd is called regular if its Hausdorff dimension coincides with its upper box counting dimension. It is proved that a random graph-directed self-similar set is regular a.e..
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat...Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.展开更多
Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informati...Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informative sentences from biomedical articles is always challenging.This study aims to develop a dual-mode biomedical text summarization model to achieve enhanced coverage and information.The research also includes checking the fitment of appropriate graph ranking techniques for improved performance of the summarization model.The input biomedical text is mapped as a graph where meaningful sentences are evaluated as the central node and the critical associations between them.The proposed framework utilizes the top k similarity technique in a combination of UMLS and a sampled probability-based clustering method which aids in unearthing relevant meanings of the biomedical domain-specific word vectors and finding the best possible associations between crucial sentences.The quality of the framework is assessed via different parameters like information retention,coverage,readability,cohesion,and ROUGE scores in clustering and non-clustering modes.The significant benefits of the suggested technique are capturing crucial biomedical information with increased coverage and reasonable memory consumption.The configurable settings of combined parameters reduce execution time,enhance memory utilization,and extract relevant information outperforming other biomedical baseline models.An improvement of 17%is achieved when the proposed model is checked against similar biomedical text summarizers.展开更多
Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the...Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.展开更多
Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the simila...Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop-tree based indexing method. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.展开更多
We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph model...We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.展开更多
同一领域产品的专利技术具有高技术关联度等特征,企业在生产经营活动中面临着专利侵权的潜在风险,立足于企业专利侵权预警的实际需求,高效、准确地检测产品存在的专利侵权风险具有重要意义。由此,本文提出了专利侵权风险预警模型,该模...同一领域产品的专利技术具有高技术关联度等特征,企业在生产经营活动中面临着专利侵权的潜在风险,立足于企业专利侵权预警的实际需求,高效、准确地检测产品存在的专利侵权风险具有重要意义。由此,本文提出了专利侵权风险预警模型,该模型重新定义了领域专利知识图谱、产品技术方案图谱的模式层,涵盖了组件实体、结构实体和功效实体三类实体类型,以及组成关系、相对位置关系、连接关系和功效达成关系四类实体关系;基于BERT(bidirectional encoder representations from transformers)和BiLSTM(bi-directional long short-term memory)模型构建专利知识图谱和产品技术方案知识图谱;基于ComplEx模型实现知识图谱的嵌入,实现产品和专利技术之间相似度的量化计算,并根据专利侵权风险指数做出侵权预警。以空气加湿器和耳机两类产品进行实证研究,专利侵权预警准确率为86.67%,具有一定的应用价值。展开更多
文摘Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.
基金The National Natural Science Foundation of China(No.60003019).
文摘To properly compute the ontological similarity, an ontological similarity network-based reasoning framework is proposed. It structurally integrates extension-based approach, intension-based approach, the similarity network-based reasoning to exploit the implicit similarity, and the feedback from the context to validate the similarity measures. A new similarity measure is also presented to construct concept similarity network, which scales the similarity using the relative depth of the least common super-concept between any two concepts. Subsequently, the graph theory, instead of predefined knowledge rules, is applied to perform the similarity network-based reasoning such that the knowledge acquisition can be avoided. The framework has been applied to text categorization and visualization of high dimensional data. Theory analysis and the experimental results validate the proposed framework.
文摘There are numerous application areas of computing similarity between process models.It includes finding similar models from a repository,controlling redundancy of process models,and finding corresponding activities between a pair of process models.The similarity between two process models is computed based on their similarity between labels,structures,and execution behaviors.Several attempts have been made to develop similarity techniques between activity labels,as well as their execution behavior.However,a notable problem with the process model similarity is that two process models can also be similar if there is a structural variation between them.However,neither a benchmark dataset exists for the structural similarity between process models nor there exist an effective technique to compute structural similarity.To that end,we have developed a large collection of process models in which structural changes are handcrafted while preserving the semantics of the models.Furthermore,we have used a machine learning-based approach to compute the similarity between a pair of process models having structural and label differences.Finally,we have evaluated the proposed approach using our generated collection of process models.
文摘A set in Rd is called regular if its Hausdorff dimension coincides with its upper box counting dimension. It is proved that a random graph-directed self-similar set is regular a.e..
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.
文摘Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informative sentences from biomedical articles is always challenging.This study aims to develop a dual-mode biomedical text summarization model to achieve enhanced coverage and information.The research also includes checking the fitment of appropriate graph ranking techniques for improved performance of the summarization model.The input biomedical text is mapped as a graph where meaningful sentences are evaluated as the central node and the critical associations between them.The proposed framework utilizes the top k similarity technique in a combination of UMLS and a sampled probability-based clustering method which aids in unearthing relevant meanings of the biomedical domain-specific word vectors and finding the best possible associations between crucial sentences.The quality of the framework is assessed via different parameters like information retention,coverage,readability,cohesion,and ROUGE scores in clustering and non-clustering modes.The significant benefits of the suggested technique are capturing crucial biomedical information with increased coverage and reasonable memory consumption.The configurable settings of combined parameters reduce execution time,enhance memory utilization,and extract relevant information outperforming other biomedical baseline models.An improvement of 17%is achieved when the proposed model is checked against similar biomedical text summarizers.
文摘Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.
文摘Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop-tree based indexing method. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.
文摘We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.
文摘同一领域产品的专利技术具有高技术关联度等特征,企业在生产经营活动中面临着专利侵权的潜在风险,立足于企业专利侵权预警的实际需求,高效、准确地检测产品存在的专利侵权风险具有重要意义。由此,本文提出了专利侵权风险预警模型,该模型重新定义了领域专利知识图谱、产品技术方案图谱的模式层,涵盖了组件实体、结构实体和功效实体三类实体类型,以及组成关系、相对位置关系、连接关系和功效达成关系四类实体关系;基于BERT(bidirectional encoder representations from transformers)和BiLSTM(bi-directional long short-term memory)模型构建专利知识图谱和产品技术方案知识图谱;基于ComplEx模型实现知识图谱的嵌入,实现产品和专利技术之间相似度的量化计算,并根据专利侵权风险指数做出侵权预警。以空气加湿器和耳机两类产品进行实证研究,专利侵权预警准确率为86.67%,具有一定的应用价值。